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A method is presented for calculating the far field sound radiation from a shallow spherical shell in
an acoustic medium. The shell has a concentrated ring mass boundary condition at its perimeter
representing a loudspeaker voice coil and is excited by a concentrated ring force exerted by the end
of the voice coil. A Green’s function is developed for a shallow spherical shell, which is based upon
Reissner’s solution to the shell wave equation �Q. Appl. Math. 13, 279–290 �1955��. The shell is
then coupled to the surrounding acoustic medium using an eigenfunction expansion, with unknown
coefficients, for its deflection. The resulting surface pressure distribution is solved using the King
integral together with the free space Green’s function in cylindrical coordinates. In order to
eliminate the need for numerical integration, the radiation �coupling� integrals are solved
analytically to yield fast converging expansions. Hence, a set of simultaneous equations is obtained
which is solved for the coefficients of the eigenfunction expansion. These coefficients are finally
used in formulas for the far field sound radiation. © 2007 Acoustical Society of
America. �DOI: 10.1121/1.2715464�
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I. INTRODUCTION

The shallow spherical shell is a somewhat commonly
used structure in acoustical transducers and methods for cal-
culating its eigenfrequencies in a vacuum have long been
established,1–5 but little analytical work appears to have been
done for calculating the radiated sound pressure when sur-
rounded by a fluid medium. This is perhaps slightly surpris-
ing considering the extensive usage of shells in audio trans-
ducers ranging from miniature loudspeakers in mobile
devices to hi-fi midrange units and high power tweeters used
in PA systems. Although the use of boundary or finite ele-
ment modeling is now fairly widespread in the transducer
industry, analytical solutions are particularly useful in pro-
viding benchmarks for such models so that the element size
and meshing geometry can be optimized. This enables more
complicated geometries to be modeled with confidence.

A more general aim of this paper, though, is to provide
formulas which enable very fast calculations and show the
relationships between the various parameters. For example, it
is useful to know how great the effect of the acoustic loading
actually is and whether acoustic resistance can be used to
control the modes. However, neither the ring-surround nor
any other structures in a typical loudspeaker, such as the
magnet and basket, are included in the model: The shell is
assumed to be open to free space on both sides of the baffle
which extends to infinity from the rim, although a specific
acoustic impedance is included which can be used to model
distributed impedances such as external damping �e.g., a
mesh� or mixed mass and resistance in the form of an array
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of sound outlet holes. �Internal damping can be modeled us-
ing complex flexural rigidity.6� This specific impedance can
also be used in a slightly less rigorous manner to represent
lumped parameters such as the compliance of a rear cavity.

Reissner1 provides a method for calculating the in vacuo
eigenfrequencies based on the assumption that, if the shell is
shallow, the radial and tangential components of the dis-
placement can be ignored. Furthermore, it is suggested that
this is a reasonable assumption for height/radius ratios up to
around 0.25. A similar assumption is made here for the
acoustic radiation whereby the shell is treated as a flat circu-
lar radiator. From a study made by Suzuki,et al.,7 it can be
concluded that this is a reasonable assumption up to ka=5
for the same range of height/radius ratios. This is somewhat
fortuitous because it allows a small amount of curvature to
be applied in order to increase rigidity �or reduce mass� rela-
tive to a flat plate without deviating too far from the theo-
retically flat far-field on-axis response of a flat piston up to
the first break-up mode. Furthermore, the thin shallow shell
assumptions simplify the formulation.

Jones et al.4 provide an alternative approach for calcu-
lating the eigenfrequencies, which allows axial asymmetry
while Thomas et al.5 investigate nonlinear vibrations. Suzuki
et al.8 calculate the sound radiated from a fluid-loaded plate
using an elastic boundary condition at the perimeter to model
the suspension. However, in the current analysis it is as-
sumed that, above the suspension resonance, the coil mass
dominates, so this is included as a boundary condition too,
together with the electrical/mechanical damping resistance.
The Green’s function in cylindrical coordinates is used, in-

ikr
stead of the more common spherical form e / �4�r�, in or-
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der to facilitate the solution of the integrals and so avoid the
need for numerical calculation of nested integrals.

A crucial factor in the solution of problems of sound
radiation from monopole sources with arbitrary velocity dis-
tributions is the choice of trial function for the velocity or
displacement at the source. In cases where the velocity is
either zero or infinity at the perimeter,9,10 a trial function
based upon Bouwkamp’s solution11 to the free space wave
equation in oblate spheroidal coordinates has been shown to
be particularly useful, especially when calculating the near
field pressure. The same applies to the trial function for the
source pressure in dipole sources.12 However, in this case,
the velocity has a finite nonzero value at the shell perimeter
so an eigenfunction �Bessel� expansion is used instead in
order to avoid potential problems with convergence.

II. SOLUTION OF THE DYNAMIC IN VACUO SHELL
WAVE EQUATIONS

A. Shell boundary conditions

The equations that follow are written in axisymmetric
cylindrical coordinates, with w as the radial ordinate and z as
the axial ordinate. An elastic spherical shell with radius a and
thickness h, as shown in Fig. 1, is set in an infinite baffle of
the same thickness with its center located on the z axis,
which forms the axis of symmetry. Within its perimeter, the
shell is homogeneous and continuous and is fabricated from
an isotropic material with a Poisson’s ratio of �=0.3.

For the purpose of this model, the shell and coil former
are formed from the same piece of material and have the

FIG. 1. Geometry of the shell.
same thickness. Hence, at the rim, there is assumed to be
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neither bending nor radial strain. Also, the coil force F̃C is
applied to the rim in the z direction. The tilde denotes a
harmonically time varying quantity where the factor ei�t is
suppressed. A separate suspension is assumed to be attached
either to the coil or directly to the shell perimeter. It is as-
sumed to provide pure linear stiffness KS in the z direction
with mechanical damping RM and its mass is included with
that of the voice coil, which is denoted by MC. The coil

driving force F̃C is used as the input in a wave equation for
the shell, which is defined in terms of the input voltage ẽin by

F̃C = Blẽin/RE, �1�

where RE is the electrical resistance of the coil and Bl is the
magnetic flux coil length product. The total damping resis-
tance RS is then given by

RS = RM + �Bl�2/RE. �2�

The deflection �̃�w� of the shell is then be used as a param-
eter to couple it to the surrounding loss-free acoustic me-
dium. Hence the shell and free space wave equations must be
solved simultaneously.

B. Nonhomogeneous shell wave equation

Reissner’s dynamic shell wave equations1 are obtained
by adding an axial inertia term to the static shell equations13

while ignoring radial or tangential terms. Suppose that the
spherical shell surface, as shown in Fig. 1, is defined by

z = R��1 − w2/R2 − �1 − a2/R2� �
a2 − w2

2R
, R

� 2a �for surface average error � 10 % � . �3�

The following simultaneous steady-state equations with an
applied external harmonic load distribution p̃�w� need to be

solved for the displacement �̃ and an Airy stress function F̃,

D�4�̃�w� −
1

R
�2F̃�w� − �2�Sh�̃�w� = p̃�w� , �4�

�4F̃�w� +
hY

R
�2�̃�w� = 0, �5�

where, in the case of axisymmetric polar coordinates, the
Laplace operator is given by

�2 =
�2

�w2 +
1

w

�

�w
�6�

and D is the flexural rigidity given by

D =
Yh3

12�1 − �2�
, �7�

where h is the thickness of the shell, Y is the Young’s modu-
lus of elasticity of the shell material, � is its Poisson’s ratio,
and �S is its density. The radius of curvature R is related to

the dome height H by
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R =
a2

2H
. �8�

Let a harmonic function �̃ be defined which satisfies

�2�̃ = 0 �9�

so that

�2F̃�w� = −
hY

R
��̃�w� − �̃� , �10�

which, in turn, satisfies Eq. �5�. Substituting Eq. �10� in Eq.
�4� gives the following single steady-state homogeneous
wave equation for the deflection:

�D�4 +
hY

R2 − �2�sh��̃�w� =
hY

R
�̃ + p̃�w� . �11�

C. Homogeneous shell wave equation

Suppressing the external pressure term in Eq. �11� yields
the homogeneous wave equation, which can be written in the
Helmholtz form as follows:

��4 − kS
4��̃�w� =

hY

RD
�̃ , �12�

where kS is the wave number of the shell which is given by

kS =
2�

	S
=

�

cS
= ��Sh

D
�2 −

hY

R2D
�1/4

�13�

or, using Eqs. �7� and �8�, it can be written

kS
4 =

�Sh

D
�2 −


4

a4 , �14�

where


4 = 48�1 − �2�H2/h2. �15�

The speed of sound cS in the shell is given by

cS = �/kS. �16�

As with a plate, high frequencies travel faster in the shell
than low frequencies, which makes the shell a dispersive
medium. It can be seen that at some transition frequency f INF

the speed of sound and hence also the wavelength become
infinite. Below f INF, the wavelength is complex with a 45°
phase angle. Hence static solutions13,14 are usually written in
terms of Thomson �a.k.a. Kelvin� functions, which can be
defined as Bessel functions with ei�/4 in their arguments.15

The transition frequency is given by

f INF =
H

�a2� Y

�S
. �17�

Reissner1 shows that the solutions to Eqs. �4� and �5� are
eigenfunctions of the form

�̃n�w� = C̃1nJ0�kSw� + C̃2nY0�kSw� + C̃3nI0�kSw�

˜ ˜
+ C4nK0�kSw� + C5n, �18�
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F̃n�w� = −
2HhY

kS
2a2 �C̃1nJ0�kSw� + C̃2nY0�kSw� − C̃3nI0�kSw�

− C̃4nK0�kSw�� +
�Sha2�2

8H
C̃5nw2 + C̃6n log w

+ C̃7n, �19�

where C̃5n= �̃n and n is the eigenindex. A useful alternative
derivation to that of Reissner is provided by Gradowczyk,14

which uses the auxiliary equation method to solve the simul-
taneous differential equations. In Eqs. �18� and �19�, the ar-
guments of the Bessel functions J ,Y , I, and K can only have
specific values, or eigenvalues, which satisfy the boundary
conditions. The eigenvalues of the system are represented by
setting kSa=�n. The eigenvalues and constants are then de-
termined by applying boundary conditions, which are evalu-
ated with help from the following identities:15

d

dw
Z0�kSw� = � kSZ1�kSw� , �20�

d2

dw2Z0�kSw� = kS
2�±

Z1�kSw�
kSw

� Z0�kSw�� , �21�

d3

dw3Z0�kSw� = kS
3	�1 �

2

kS
2w2�Z1�kSw� ±

Z0�kSw�
kSw 
 ,

�22�

where Z can represent either J �upper sign� or I �lower sign�.

D. Eigenvalues of the shell in a vacuum

1. Boundary condition of continuity at the center

In this configuration, �̃n and F̃n must be continuous at
the apex �w=0�. Therefore we have

C̃2n = C̃4n = C̃6n = 0. �23�

2. Boundary condition of zero bending at the
perimeter

There is assumed to be zero bending at the perimeter.
Therefore

�

�w
�̃n�w��w=a = −

�n

a
C̃1nJ1��n� +

�n

a
C̃3nI1��n� = 0 �24�

so that

C̃3n =
J1��n�
I1��n�

C̃1n. �25�

3. Boundary condition of zero radial strain at the
perimeter

At the perimeter, there is assumed to be zero radial
13
strain. Hence
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� �2

�w2 −
�

w

�

�w
��F̃n�w��w=a

=
2hHY

a2 	C̃1n�J0��n� −
1 + �

�n
J1��n�� + C̃3n�I0��n�

−
1 + �

�n
I1��n��
 + �1 − ���n

2a2�Sh

4H
C̃5n = 0, �26�

where from Eq. �14�

�n
2 =

D��n
4 + 
4�

a4�Sh
�27�

so that

C̃5n = −
2
4

�1 − ����n
4 + 
4�	C̃1n�J0��n� −

1 + �

�n
J1��n��

+ C̃3n�I0��n� −
1 + �

�n
I1��n��
 . �28�

4. Coil impedance at the perimeter

The coil mass and suspension produce an axially sym-
metric �vertical� shear force13 resultant Qv at the perimeter.
Hence, assuming that a�R,

�Q̃vn�w��w=a = �Q̃n�w� + Ñn�w�
w

R
�

w=a

= ��n
2MC − KS − i�nRS�

�̃n�a�
2�a

, �29�

where MC is the mass of the coil and its former, KS is the
stiffness of the suspension, and RS is the total damping re-
sistance. Also, the shear force is defined by13

Q̃n�w� = − D
�

�w
�2�̃n�w��w=a� = −

�n
3

a3 D�C̃1nJ1��n�

+ C̃3nI1��n�� �30�

and the radial membrane force is defined by

Ñn�w� = −
1

w

�

�w
F�w�

= −
2HhY

a2�n

�C̃1nJ1��n� + C̃3nI1��n�� − C̃5n

�n
2a2�Sh

4H

�30a�

so that

C̃5n = − C̃1nJ0��n� − C̃3nI0��n� − ��n
4 + 
4�



4C̃1nJ1��n� − �n�C̃1nJ0��n� + C̃3nI0��n��

�n��1 +
MC

MS
���n

4 + 
4� −
a2KS

�D
− i

RS

�
��n

4 + 
4

�ShD
� .

�31�
The surface area S of a shallow shell is
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S = 2�R�R − �R2 − a2� � �a2, R � 2a . �32�

The total mass MS of the shell is therefore

MS = �a2�Sh . �33�

Let �0 be a notional angular frequency, representing the sus-
pension resonance of a perfectly rigid shell �including its coil
mass�. Hence, the stiffness may be defined by

KS = �MS + MC��0
2. �34�

From Eqs. �27�, �33�, and �34�, the stiffness can be expressed
as follows:

KS =
�D

a2 �1 +
MC

MS
���0

4 + 
4� , �35�

where �0 is a notional zeroth eigenvalue. Also, let the Q of
this fundamental resonance be defined by

QS = ��MS + MC�KS/RS. �36�

E. Calculation of the eigenvalues

Equating Eq. �28� with Eq. �31� and inserting the expres-
sions for KS and RS from Eqs. �35� and �36�, respectively,

together with the identity for C̃3n from Eq. �25� produces a
characteristic equation that can be solved for the eigenvalues

�1 +
MC

MS
���n

4 − �0
4 − i

���0
4 + 
4���n

4 + 
4�
QS

�

	��1 − � ��n

4 − �1 + � �
4�W��n�

+ 4
41 + �

�n
J1��n�I1��n�


− �1 − � ���n
4 + 
4�2�W��n� −

4

�n
J1��n�I1��n�� = 0,

�37�

where

W��n� = J0��n�I1��n� + J1��n�I0��n� .

and the notional zeroth eigenvalue �0 is defined by

�0
4 =

a2MS

�D
�0

2 − 
4, �38�

which is then used as a parameter in the characteristic equa-
tion �not a solution� to define the suspension stiffness.

F. Eigenvalues with zero load at the perimeter

If there is no loading at the perimeter, then MC=0 and
�0=0. Eq. �37� reduces to

��n
4 + 
4�	W��n� − 2

�1 − ���n
4 + 2
4

�n
4 J1��n�I1��n�
 .

�39a�

For zero height, setting 
4=0, yields the following eigenval-

ues
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�1 = 0 �2 = 3.8317 �3=7.0156

�4 = 10.174 �5 = 13.324.

whereas setting 
4=� gives

�1 = ei�/4 � �2 = 5.9057 �3 = 9.1969

�4 = 12.402 �5 = 15.580.

Using the following asymptotic expressions16 for the Bessel
functions in Eq. �37�,

J��z��z→� �� 2

�z
cos�z −

�2� + 1�
4

�� , �39b�

I��z��z→� �� 1

2�z
ez, �40�

it can be shown that

�n�n→� � �n − 3/4��, H/h = 0.

�41�
�n�n→� � n�, H/h = � .

From Eq. �14�, the eigenfrequencies are obtained as follows:

fn =
h

4�a2� Y

3�S
� �n

4

�1 − �2�
+ 48

H2

h2 � . �42�

Not surprisingly, when H=0, Eq. �42� reduces to the eigen-
frequency equation for a plate. However, when H�10h, say,
the equation for the fundamental shell eigenfrequency in
asymptotic form becomes

f2 �
H

�a2� Y

�S
, H � 10h

=
1

2�R
� Y

�S
= f INF. �43�

This slightly surprising result, due to Reissner,1 indicates
that when the height of the apex is much greater than the
wall thickness, the fundamental resonant frequency �second
eigenfrequency f2� of the shell is dependent only upon its
radius of curvature and material properties regardless of the
wall thickness. �This does not apply to the first eigenfre-
quency, or piston eigenfrequency, which remains zero.� This
effect is demonstrated in Fig. 2 where the eigenfrequencies
are plotted against the height to thickness ratio. The eigen-
frequencies fn are normalized to the fundamental eigenfre-
quency fP2 of the corresponding flat circular plate where

fP2 =
�2

2h

4�a2� Y

3�1 − �2��S
, �2 = 3.8317. �44�

On the left-hand side of the plot, the eigenfrequencies con-
verge to those of the flat circular plate with the same bound-
ary conditions. On the right-hand side, the asymptotic value
is f INF/ fP2=0.4502H /h. However, f1=0 for any height be-
cause the shell is free to float through space and so this is

the “piston” eigenfrequency.
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G. Eigenvalues with infinite load at the perimeter

If MC=� and �0=0, then the shell’s dynamic axial
movement is blocked, although it can still move through
space at constant velocity and hence returns a zero value for
the 1st eigenfrequency, Eq. �38� reduces to:

��n
4 + 
4�	W��n� +

4�1 + ��
4J1��n�I1��n�
�n��1 − ���n

4 − �1 + ��
4�
 = 0 �45�

which is identical to Reissner’s equation for a clamped shell,
except for the factor ��n

4+
4� which gives the piston mode.
For zero height, setting 
4=0, yields the following eigenval-
ues

�1 = 0 �2 = 3.1962 �3 = 6.3064 �4 = 9.4395

�5 = 12.577

whereas setting 
4=� gives

�1 = ei�/4 � �2 = 5.9057 �3 = 9.1969

�4 = 12.402 �5 = 15.580

Again, using the identities of Eqs. �39� and �40�, expressions
for the large eigenvalues can be obtained:

�n�n→� � �n − 1� �, H/h = 0

�46�
�n�n→� � n�, H/h = �

In Fig. 3, the eigenfrequencies fn of a simply supported
shell are normalized to the fundamental eigenfrequency fP2

of the corresponding flat circular plate where

fP2 =
�2

2h

4�a2� Y

3�1 − �2��s
, �2 = 3.1962. �47�

On the left-hand side of the plot, the eigenfrequencies con-
verge to those of a clamped flat circular plate. On the right-
hand side, the asymptotic value is f INF/ fP1=0.6470H /h.

H. Eigenvalues with finite load at the perimeter

With a low stiffness boundary condition, �1 and f1 have

FIG. 2. Eigenfrequencies of a shallow spherical shell with zero load at the
perimeter.
values fairly close to �0 and f0, respectively, but are not
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coincident due to interaction between the modes. As the stiff-
ness is increased, �1 and f1 approach asymptotic values rep-
resenting blocked axial movement no matter how large �0

and f0 are.
The perimeter damping changes the angle of all the ei-

genvalues such that the angle of the complex eigenvalues is
no longer 45° and the imaginary parts of the remainder are
no longer zero.

I. Eigenfunctions

Substituting Eqs. �23�, �25�, and �28� in Eq. �18� yields
the following eigenfunctions:

�n�w� = J0��nw/a� − BnI0��nw/a� + Cn, �48�

which are the solutions to the following wave equation:

��4 − kS
4���n�w� − Cn� = 0, �49�

where

Bn = −
C̃3��n�

C̃1��n�
= −

J1��n�
I1��n�

�50�

and

Cn =
C̃5n

C̃1n

= −
2
4�W��n� − 2�1 + ��J1��n�I1��n�/�n�

�1 − ��I1��n���n
4 + 
4�

.

�51�

III. GREEN’S FUNCTION FOR A SHALLOW
SPHERICAL SHELL WITH AXIALLY SYMMETRIC
EXCITATION

The Green’s function for the shell that represents the
particular displacement response to an axially symmetric
harmonic delta excitation of unit strength may be expressed
as an infinite series of modes as follows:

G�w�w0� = 

n=1

�

An�n�w� �52�

FIG. 3. Eigenfrequencies of a shallow spherical shell with infinite load at
the perimeter.
and similarly
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C = 

n=1

�

AnCn. �53�

The unknown variable An may be solved for by substituting
this Green’s function in the following wave equation for a
“point source” excitation at w0, �0:

��4 − kS
4�G�w�w0� =

hY

RD
C +

1

w
��w − w0���� − �0� . �54�

Substituting kS=�n /a in Eq. �12� yields the following iden-
tity for the Laplace operator:

�4�n�w� =
�n

4

a4 �n +
hY

RD
Cn. �55�

Hence

�4G�w�w0� = 

n=1

�

An��n
4

a4 �n�w� +
hY

RD
Cn� . �56�

Substituting Eqs. �52�, �53�, and �56� in the wave Eq. �54�
yields



n=1

�

An��n
4

a4 − kS
4��n�w� =

1

w
��w − w0���� − �0� , �57�

which is then multiplied through by the eigenfunction:

�m
* �w� = J0��m

* w/a� − Bm
* I0��m

* w/a� + Cm
* , �58�

where an asterisk denotes the complex conjugate, and inte-
grated over the surface of the shell. Due to the orthogonality
of these functions, all terms having m�n simply disappear.
Therefore letting m=n leads to

a2

2
An��n

4

a4 − kS
4��

0

2�

d��n = �
0

2�

��� − �0�d��
0

a

��w

− w0��n
*�w�dw , �59�

where

�n =
2

a2�
0

a

�n
*�w��n�w�wdw , �60�

which is solved18 to give

�n = CnCn
* + 2

�nJ0��n
*�J1��n� − �n

*J0��n�J1��n
*�

�n
2 − �n

*2

− 2Bn

�nJ0��n
*�I1��n� + �n

*I0��n�J1��n
*�

�n
2 + �n

*2

− 2Bn
*�nI0��n

*�J1��n� + �n
*J0��n�I1��n

*�
�n

2 + �n
*2

+ 2BnBn
*�nI0��n

*�I1��n� − �n
*I0��n�I1��n

*�
�n

2 − �n
*2

+ 2Cn

J1��n
*� − Bn

*I1��n
*�

�n
* + 2Cn

*J1��n� − BnI1��n�
�n

.

�61�
If there were no damping in the system, setting RS=0 would
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lead to �n
2=�n

*2 which would make this solution indetermi-
nate. Hence it would be necessary to reevaluate Eq. �60�
without damping in order to obtain the solution in a different
form, which is not given here, since it is assumed that RS is
always nonzero. Using the property of the Dirac delta func-
tion gives the solution for An as follows:

An =
a2

�

�n
*�w0�

�n��n
4 − ks

4a4�
. �62�

Hence

G�w�w0� =
a2

�


n=1

�
�n�w��n

*�w0�
�n��n

4 − kS
4a4�

. �63�

IV. SOLUTION OF THE SHELL WAVE EQUATION
WITH FLUID LOADING

The steady state wave equation for the shell can now be
written adding external forces and internal resistance to the
inherent shell forces given in Eq. �12�,

��4 − kS�
4��̃�w� =

hY

RD
�̃ +

�

D
���w − a�

2�a
F̃C − p̃+�w�

+ p̃−�w�� , �64�

where p̃+�w� and p̃−�w�=−p̃+�w� are the front and rear pres-
sure distributions, respectively, due to the surrounding
acoustic medium. The modified shell wave number kS� is re-
lated to the unmodified wave number by

kS�
4 = kS

4 − i�
�

D
zs, �65�

where zs is an arbitrary specific acoustic impedance, which,
as already mentioned in Sec. I, can be used to model a mesh,
sound outlet holes/mesh or a lumped cavity impedance.
Combining the front and rear pressure terms, the solution for
the shell deflection can be written as

�̃�w� =
�

D
�

0

2� �
0

a ���w0 − a�
2�a

F̃C − 2p̃+�w0��

G�w�w0�w0dw0d�0, 0 � w � a , �66�

where � is a mass loading factor given by

� =
MS

MS + MC
. �67�

Using the modified wave number kS�, the Green’s function of
Eq. �63� can be written as follows:

G�w�w0� =
a2

�


n=1

�
�n�w��n

*�w0�
�n��n

4 − kS�
4a4�

. �68�

V. SOLUTION OF THE FREE SPACE WAVE
EQUATION

As already discussed in Sec. I the shallow shell is treated

here as a planar source. The monopole source elements and
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their images together form the shell source. Since they are
coincident in the plane of the infinite baffle, they combine to
form elements of double strength. Hence the shell can be
modeled as a “breathing” shell in free space. Due to the
symmetry of the pressure fields on either side of the plane of
symmetry, there is the following Neumann boundary condi-
tion on the surface of the infinite baffle:

�

�z
p̃�w,z��z=0± = − ik�cũ�w� = 0, a � w � � . �69�

Also, on the front and rear surfaces of the shell, there is the
coupling condition

�

�z
p̃�w,z��z=0±	=− ik�cũ�w�

=k2�c2�̃�w�, 0 � w � a
�70�

where ũ�w� is the normal particle velocity in the z direction
at the surfaces and k is the wave number given by

k =
�

c
=

2�

	
, �71�

where � is the angular frequency of excitation, � is the den-
sity of air or any other surrounding medium, c is the speed of
sound in that medium, and 	 is the wavelength. Values for �
and c of 1.18 kg/m3 and 345 m/s, respectively, are as-
sumed. In the actual physical system �as opposed to the
“breathing shell” model� the front and rear pressure dis-
tributions are related by

p̃�w,z� = − p̃�w,− z� . �72�

On the surface of the shell and surround, let the velocity
distribution ũ0�w0� be defined as

ũ0�w0� =
F̃C

2�cS


m=1

�

�m�m�w0� =
F̃C

2�cS


m=1

�

�m	J0��m
w0

a
�

− BmI0��m
w0

a
� + Cm
, 0 � w0 � a , �73�

where S is the area defined by S=�a2 and �m are the as yet
unknown dimensionless eigenfunction-expansion coeffi-
cients. Using the King integral19 and taking into account the
double layer source, the pressure distribution is defined by

p̃�w,z� = 2�
0

2� �
0

a

g�w,z�w0,z0�



�

�z0
p̃�w0,z0��z0=0+w0dw0d�0, �74�

where the Green’s function19 is defined in axisymmetric cy-
lindrical coordinates by

g�w,z�w0,z0� =
i

4�
�

0

�

J0��w�J0��w0�
�

�
e−i��z−z0�d� �75�

where

2 2
� = �k − � . �76�
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Inserting this Green’s function, together with the bound-
ary condition of Eq. �70�, into the boundary integral Eq. �74�
and integrating over the surface of the shell yields

p̃�w,z� = ka
F̃C

2S
�

0

�

J0��w�
a�

�
e−i�z


m=0

�

�m�m�a��d� ,

�77�

where the following identity18 has been used as follows:

�
0

a

J0��w0��m�w0�w0dw0 = a2�m�a�� �78�

and the function �m is defined as

�m�a�� =
�mJ0�a��J1��m� − a�J0��m�J1�a��

�m
2 − a2�2

− Bm
�mJ0�a��I1��m� + a�I0��m�J1�a��

�m
2 + a2�2

+ Cm
J1�a��

a�
. �79�

Setting z=0, provides surface pressure as follows:

p̃+�w0� = ka
F̃C

2S 

m=0

�

�m�
0

�

�m�a��J0�w0��
a�

�
d� . �80�

VI. FORMULATION OF THE COUPLED
PROBLEM

Substituting Eq. �80� in Eq. �66� and equating the de-
flection with that given by Eq. �73� �where �̃�w�=
−iũ0�w� /kc� leads to the following coupled equation �after
integrating over �0�:

�n
*�a� = − i�n

�0n��n
4 − kS�

4a4�D
2ka4�c2�

+ 2ka

m=0

�

�m�
0

�

�m�a���n
*�a��

a�

�
d�, n

= 1,2, . . . , �81�

which is obtained by equating the coefficients of �n�w� and
again using the identity of Eq. �78�.

VII. FINAL SET OF SIMULTANEOUS EQUATIONS FOR
THE EIGENVALUE EXPANSION COEFFICIENTS

From Eq. �81� the following set of M simultaneous
equations in �m can be written



m=1

M

m�n�kS�a,ka��m = �n, n = 1, . . . ,M , �82�

where

m�n�kS�a,ka� = − ika
�n��n

4 − kS�
4a4�

2 �mn + I�k,m,n� , �83�

�� �ka�
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�n = J0��n
*� − Bn

*I0��n
*� + Cn

*, �84�

where

��ka� = a2��2a�

D
= ka2�2a�P0

D
, �85�

where the infinite series limit has been truncated to order M.
The dimensionless parameter � is the fluid-loading factor,
where P0 is the static pressure defined by P0=�c2 /�, and �mn

is the Kronecker delta function. The integral I�k ,m ,n� is de-
fined by

I�k,m,n� = IF�k,m,n� + iII�k,m,n� �86�

where

IF�k,m,n� = 2ka�
0

k

�m�a���n
*�a��

a�

�k2 − �2
d� �87�

and

II�k,m,n� = − 2ka�
k

�

�m�a���n
*�a��

a�

��2 − k2
d� . �88�

It can be seen that the numerator and denominator of the first
term of �m, given by Eq. �79�, are simultaneously zero when
�m=a�, so these are indeterminate points. Using Taylor’s
series, it can be shown that the function is actually continu-
ous. Hence, the integrals can be solved numerically so long
as these indeterminate points are avoided. Also, the weak
singularity at �=k in Eqs. �87� and �88� can be removed by
means of suitable substitutions, as shown in the following
sections. However, the integrands are strongly oscillating
and the integral II has an infinite limit. Therefore, it is more
efficient to solve these integrals analytically to yield fast
converging expansions. Although the integrand contains a
total of 25 terms, when �m and �n are multiplied out there
are only 6 unique integrals, each subdivided into finite and
infinite parts.

VIII. SOLUTION OF THE FINITE AND INFINITE
INTEGRALS

A. Expansion of the finite integral

After substituting �=k�1− t2, Eq. �87� for the finite in-
tegral becomes

IF�k,m,n� = 2k2a2�
0

1

�m�ka�1 − t2��n
*�ka�1 − t2�dt ,

�89�

where �m is given by Eq. �79�. The Bessel functions in Eq.
�89� are then expanded using the following Lommel
expansions:17

J0�ka�1 − t2� = 

p=0

�
Jp�ka�

p!
� ka

2
�p

t2p, �90�

J1�ka�1 − t2� = �1 − t2

�

Jp+1�ka�
p!

� ka

2
�p

t2p. �91�

p=0
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B. Solution to the finite integral

The solution to the finite integral is given by

IF�k,m,n� = �1a�m,n�IF1�k,�m,�n
*�

+ Bm�1b�m,n�IF1�k,i�m,�n
*�

+ Bn
*�1c�m,n�IF1�k,�m,i�n

*�

+ BmBn
*�1d�m,n�IF1�k,i�m,i�n

*�

+ �2a�m,n�IF2�k,�m� + �2a�n,m�IF2�k,�n
*�

+ Bm�2b�m,n�IF2�k,i�m�

+ Bn
*�2b�n,m�IF2�k,i�n

*�

+ �3a�m,n�IF3�k,�m,�n
*�

+ �3a�n,m�IF3�k,�n
*,�m�

+ Bm�3b�m,n�IF3�k,i�m,�n
*�

+ Bn
*�3b�n,m�IF3�k,i�n

*,�m�

+ BmBn
*��3c�m,n�IF3�k,i�m,i�n

*�

+ �3c�n,m�IF3�k,i�n
*,i�m��

+ �4a�m,n�IF4�k,�m� + �4a�n,m�IF4�k,�n
*�

− Bm�4b�m,n�IF4�k,i�m�

FIG. 4. On-axis far-field response with h=10 �m and H=0.5 mm �RM

=0.06 N s/m�.

FIG. 5. On-axis far-field response with h=10 �m and H=1.0 mm �RM
=0.06 N s/m�.
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− Bn
*�4b�n,m�IF4�k,i�n

*�

+ �5a�m,n�IF5�k,�m,�n
*�

+ Bm�5b�m,n�IF5�k,i�m,�n
*�

+ Bn
*�5c�m,n�IF5�k,�m,i�n

*�

+ BmBn
*�5d�m,n�IF5�k,i�m,i�n

*�

+ CmCn
*IF6�k� , �92�

where the coefficients � are given by Eqs. �A1�–�A22� and
the solutions to the individual integral terms IF are given by
Eqs. �A23�–�A30�.

C. Expansion of the infinite integral

After substituting �=k�t2+1, Eq. �88� for the infinite
integral becomes

II�k,m,n� = − 2k2a2�
0

�

�m�ka�t2 + 1��n
*�ka�t2 + 1�dt ,

�93�

where �m is given by Eq. �79�. The Bessel functions in Eq.
�93� are then be expanded using Gegenbauer’s summation
theorem15 as follows:

FIG. 6. On-axis far-field response with h=20 �m and H=0.5 mm �RM

=0.13 Ns/m�.

FIG. 7. �Color online� On-axis far-field response with h=20 �m and H

=1.0 mm �RM =0.13 Ns/m�.
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J0�ka�t2 + 1� = 2

p=0

�
�− 1�p

1 + �p0
J2p�ka�J2p�kat� , �94�

J1�ka�t2 + 1� =
2�t2 + 1

kat


p=0

�

�− 1�p�2p

+ 1�J2p+1�ka�J2p+1�kat� . �95�

D. Solution to the infinite integral

The solution18 to the infinite integral is given by

II�k,m,n� = �1a�m,n�II1�k,�m,�n
*�

+ Bm�1b�m,n�II1�k,i�m,�n
*�

+ Bn
*�1c�m,n�II1�k,�m,i�n

*�

+ BmBn
*�1d�m,n�II1�k,i�m,i�n

*�

+ �2a�m,n�II2�k,�m� + �2a�n,m�II2�k,�n
*�

+ Bm�2b�m,n�II2�k,i�m�

+ Bn
*�2b�n,m�II2�k,i�n

*�

+ �3a�m,n�II3�k,�m,�n
*�

+ �3a�n,m�II3�k,�n
*,�m�

FIG. 8. On-axis far-field response with h=475 �m and H=0 mm �RM

=3 Ns/m�.

FIG. 9. On-axis far-field response with the same parameters as Fig. 4 plus

an external damping resistance zS=200 Ra.
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+ Bm�3b�m,n�II3�k,i�m,�n
*�

+ Bn
*�3b�n,m�II3�k,i�n

*,�m�

+ BmBn
*��3c�m,n�II3�k,i�m,i�n

*�

+ �3c�n,m�II3�k,i�n
*,i�m��

+ �4a�m,n�II4�k,�m� + �4a�n,m�II4�k,�n
*�

− Bm�4b�m,n�II4�k,i�m�

− Bn
*�4b�n,m�II4�k,i�n

*�

+ �5a�m,n�II5�k,�m,�n
*�

+ Bm�5b�m,n�II5�k,i�m,�n
*�

+ Bn
*�5c�m,n�II5�k,�m,i�n

*�

+ BmBn
*�5d�m,n�II5�k,i�m,i�n

*� + CmCn
*II6�k� ,

�96�

where the coefficients � are given by Eqs. �A1�–�A22� and
the solutions to the individual integral terms IF are given by
Eqs. �A31�–�A44�.

IX. FAR-FIELD PRESSURE RESPONSE: RIGOROUS
CALCULATION

Starting from Eq. �73� for the surface velocity, the far-
field pressure is derived using the same procedure as shown

FIG. 10. On-axis far-field response with the same parameters as Fig. 5 plus
an external damping resistance zS=200 Ra.

FIG. 11. On-axis far-field response with the same parameters as Fig. 6 plus

an external damping resistance zS=200 Ra.
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param
in Part I of Sec. II of a recent paper,10 together with the
identity of Eqs. �79� and �80� �while letting �=k sin ��, to
give

p̃�r,�� = − i
aF̃C

4rS
e−ikrD��� , �97�

where r is the distance from the center of the shell to the
observation point and � is the azimuthal angle. The directiv-
ity function D��� is given by

D��� = 2ka

m=1

�

�m�Cm
J1�ka sin ��

ka sin �
− Bm



�mJ0�ka sin ��I1��m� + �ka sin ��I0��m�J1�ka sin ��

�m
2 + �ka sin ��2

FIG. 12. �Color online� On-axis far-field response with the same

FIG. 13. �Color online� On-axis far-field response with the same parameters
3
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+
�mJ0�ka sin ��J1��m� − �ka sin ��J0��m�J1�ka sin ��

�m
2 − �ka sin ��2 � ,

�98�

which, for �=0 �i.e., on-axis�, simplifies to

D�0� = ka

m=1

�

�m�2
J1��m�

�m
− 2Bm

I1��m�
�m

+ Cm� . �99�

The on-axis pressure responses are shown in Figs. 4–14
using the parameters from Tables I and II where the SPL is
given by

SPL = 20 log10�p̃�r,0�/20 
 10−6� , �100�

where

eters as Fig. 7 plus an external damping resistance zS=200 Ra.

FIG. 14. On-axis far-field response with the same parameters as Fig. 4

as Fig. 7 plus a lumped cavity with a volume of 50 cm .
 except that the coil mass and suspension stiffness are both zero.
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p̃�r,0� = − i
ka2F̃C

4rS
e−ikr


m=1

M

�m�2
J1��m�

�m
− 2Bm

I1��m�
�m

+ Cm� . �101�

This result can also be obtained directly by integrating the
velocity ũ0�w0� from Eq. �73� over the surface in order to

derive the total volume velocity Ũ0 and using the standard
far-field equation,12,20

p̃�r,0� = −
ik�cŨ0

2�r
e−ikr. �102�

The calculations were performed using 80 digit precision
with M =3+2ka and P=Q=2M.

X. FAR-FIELD PRESSURE RESPONSE: WITHOUT
FLUID LOADING

If the acoustic loading is ignored such that p̃+�w0�=0,
Eq. �66� for the deflection can be simplified to

�̃�w� =
�

D
�

0

a ��w0 − a�F̃C

a
G�w�w0�w0dw0

=
a2�F̃C

�D


n=1

�
�n�w��n

*�a�
�n��n

4 − kS�
4a4�

, �103�

in which case

TABLE I. Shell parameters for the 25 mm aluminum loudspeaker.

Radius a=12.5 mm
Thickness h=10/2 /800 �m
Apex height H=0/0.5/1.0 mm
Young’s modulus Y =69 GN/m2

Poisson’s ratio �=0.3
Density of shell �S=2700 kg/m3

Shell mass MS=�a2�Sh=13.3/26.6/1060 mg
Density of air �=1.18 kg/m3

Speed of sound in air c=345 m/s
Damping/loading zS=0 kg/s unless otherwise specified
Observation distance r=1 m

TABLE II. Coil and suspension parameters for the 25 mm aluminum loud-
speaker.

Fundamental frequency f0=700 Hz
Coil electrical resistance RE=7.6 �

Coil wire diameter t=50 �m
Coil wire density �C=8900 kg/m3

Coil wire resistivity �C=15.9 n�m
Coil wire total length l=�t2RE / �4�C�=0.94 m
Coil wire length per turn lT=2�a=78.5 mm
Coil number of turns n= l / lT=12
Coil mass MC=2�nt�Sh+�t2l�C /4=17.7/22.8/118 mg
Magnetic flux density B=0.8 T
Flux coil length product Bl=B
 l=0.75 T m
Input voltage for 1 W ẽin=�REW̃�W̃=1Wrms=2.76 V
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�m =
��2�ka��J0��m

* � − Bm
* I0��m

* � + Cm
* �

ika�m��m
4 − kS�

4a4�
, �104�

which can be used in Eqs. �97�–�101� in order to calculate
the far-field pressure response without fluid loading.

XI. DISCUSSION OF THE RESULTS

An example loudspeaker is simulated using the param-
eters given in Tables I and II, and the results are plotted in
Figs. 4–15. Also, the eigenfrequencies in a vacuum are
shown in Table III. In Figs. 4–7, results are shown for two
different heights and two different thicknesses using the rig-
orous solution and the solution without acoustic loading. A
third solution is shown which is obtained by adding the fol-
lowing lumped radiation impedance to the solution without
loading:

zS = zRad = 2�c�1 −
J1�2ka�

ka
+ i

H1�2ka�
ka

� , �105�

where zRad is the radiation impedance of a rigid disk in an
infinite baffle.12,20 It can be seen that the thin shallow
shell of Fig. 4 shows significant influence from acoustic
radiation load and the lumped radiation impedance is a
fairly poor approximation to the rigorous solution,
whereas the thicker deeper shell of Fig. 7 shows less in-
fluence and all three solutions are effectively converging.
Figure 8 is for a flat plate which has been made thick

TABLE III. Eigenfrequencies for the 25 mm aluminum loudspeaker.

Frequency h=10 �m h=20 �m
No. H=0.5 mm H=1.0 mm H=0.5 mm H=1.0 mm

n=1 699.98 699.99 700.05 700.01
n=2 5149.2 10313.0 5261.9 10356.0
n=3 5177.8 10382.0 5775.7 10629.0
n=4 5314.6 10573.0 6988.3 11353.0
n=5 5676.3 10969.0 8963.5 12756.0
n=6 6376.5 11659.0 11254.0 14968.0
n=7 7477.3 12714.0 13177.0 17981.0
n=8 8952.9 14178.0 16342.0 21578.0
n=9 10467.0 16060.0 20626.0 27911.0
n=10 13658.0 18324.0 25669.0 32904.0

FIG. 15. 30° off-axis far-field response with the same parameters as Fig. 4
except that the coil mass and suspension stiffness are both zero.
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enough to have its first “break-up” mode at the same fre-
quency as the shell in Fig. 7. However, the penalty is
drastically reduced sensitivity.

Figures 9–12 show the effect of applying acoustic resis-
tance. Again, the thin shallow shell of Fig. 9 shows much
greater influence, with a moderately damped response, than
the thicker deeper shell of Fig. 12.

Figure 13 holds no surprises and simply serves to show
how an approximation for a rear cavity can be included in
the model using

zS = zCav =
�c2S

i�V
, �106�

where V is the volume of the cavity and the same fully
coupled acoustic loading is used as in Fig. 5. It is a lumped
parameter approximation, which assumes that the cavity is
anechoic at high frequencies and just provides pure compli-
ance at low frequencies. As expected, it raises the fundamen-
tal resonant frequency and increases the associated QS value.

Interestingly, the on-axis response without acoustic load-
ing or coil mass, shown in Fig. 14, is perfectly flat.21 How-
ever, the off-axis response of Fig. 15 shows significant modal
behavior, so it can be concluded that the flat on-axis response
is due to the average surface velocity of the shell with a free
edge �apart from a zero bending constraint� being constant at
all frequencies. In Fig. 15 it can be seen that the acoustic
loading disrupts this trend to a certain extent, but not as
much as the coil mass in all the previous figures. Hence the
effect of the mass loading from the voice coil is highly sig-
nificant.

XII. CONCLUSIONS

A method for calculating the response of a loudspeaker
with a diaphragm in the form of a shallow spherical shell has
been derived. An example has been calculated which com-
pares the rigorous solution with an approximation using a
lumped radiation load and no load. The approximation di-
verges from the rigorous solution in the case of a very thin
and shallow shell. Also, the effect of the mass loading from
the voice coil has been explored and found to be highly
significant.
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APPENDIX: SOLUTION OF THE INDIVIDUAL FINITE
AND INFINITE INTEGRAL TERMS

The coefficients � in Eqs. �92� and �96� are given by

�1a�m,n� = �m�n
*J1��m�J1��n

*� , �A1�

�1b�m,n� = �m�n
*I1��m�J1��n

*� , �A2�

�1c�m,n� = �m�n
*J1��m�I1��n

*� , �A3�

�1d�m,n� = �m�*I1��m�I1��*� , �A4�
n n
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�2a�m,n� = − Cn
*�mJ1��m� , �A5�

�2b�m,n� = − Cn
*�mI1��m� , �A6�

�2a�n,m� = − Cm�n
*J1��n

*� , �A7�

�2b�n,m� = − Cm�n
*I1��n

*� , �A8�

�3a�m,n� = − �mJ0��n
*�J1��m� , �A9�

�3a�n,m� = − �n
*J0��m�J1��n

*� , �A10�

�3b�m,n� = �n
*I0��m�J1��n

*� − �mJ0��n
*�I1��m� , �A11�

�3b�n,m� = �mI0��n
*�J1��m� − �n

*J0��m�I1��n
*� , �A12�

�3c�m,n� = �n
*I0��m�I1��n

*� , �A13�

�3c�n,m� = �mI0��n
*�I1��m� , �A14�

�4a�m,n� = Cn
*J0��m� , �A15�

�4b�m,n� = Cn
*I0��m� , �A16�

�4a�n,m� = CmJ0��n
*� , �A17�

�4b�n,m� = CmI0��n
*� , �A18�

�5a�m,n� = J0��m�J0��n
*� , �A19�

�5b�m,n� = − I0��m�J0��n
*� , �A20�

�5c�m,n� = − J0��m�I0��n
*� , �A21�

�5d�m,n� = I0��m�I0��n
*� �A22�

and the solutions18 to the individual integral terms IF in Eq.
�92� are given by

IF1�k,�m,�n
*� = �

0

1 2k2a2J0
2�ka�1 − t2�

�k2a2�1 − t2� − �m
2 ��k2a2�1 − t2� − �n

*2�
dt

= 2k2a2

p=0

P



q=0

Q
�ka/2�p+qJp�ka�Jq�ka�

p ! q ! �2p + 2q + 1���m
2 − �n

*2�


�FF1�k,�m,p,q� − FF1�k,�n
*,p,q�� , �A23�

IF2�k,�m� = �
0

1 2kaJ0�ka�1 − t2�J1�ka�1 − t2�
�1 − t2�k2a2�1 − t2� − �m

2 �
dt

= 2ka

p=0

P



q=0

Q
�ka/2�p+qJp�ka�Jq+1�ka�

p ! q ! �2p + 2q + 1�

FF1�k,�m,p,q� , �A24�
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IF3�k,�m,�n
*� = �

0

1 2k3a3�1 − t2J0�ka�1 − t2�J1�ka�1 − t2�
�k2a2�1 − t2� − �m

2 ��k2a2�1 − t2� − �n
*2�

dt

= 2ka

p=0

P



q=0

Q
�ka/2�p+qJp�ka�Jq+1�ka�

p ! q ! �2p + 2q + 1���m
2 − �n

*2�


��m
2 FF1�k,�m,p,q� − �n

*2FF1�k,�n
*,p,q�� ,

�A25�

IF4�k,�m� = �
0

1 2k2a2J1
2�ka�1 − t2�

k2a2�1 − t2� − �m
2 dt

= 2k2a2

p=0

P



q=0

Q
�ka/2�p+qJp+1�ka�Jq+1�ka�

p ! q!


�FF1�k,�m,p,q�
2p + 2q + 1

−
FF4�k,�m,p,q�

2p + 2q + 3
� , �A26�

IF5�k,�m,�n
*� = �

0

1 2k4a4�1 − t2�J1
2�ka�1 − t2�

�k2a2�1 − t2� − �m
2 ��k2a2�1 − t2� − �n

*2�
dt

= 2

p=0

P



q=0

Q
�ka/2�p+qJp+1�ka�Jq+1�ka�

p ! q ! �2p + 2q + 1�


�1 − �m
4 FF1�k,�m,p,q�

�n
*2 − �m

2

+ �n
*4FF1�k,�n

*,p,q�
�n

* − �m
2 � , �A27�

IF6�k� = �
0

1 2J1
2�ka�1 − t2�

1 − t2 dt

= 1 −
J1�2ka�

ka
�A28�

in which the subfunctions FF are defined by the following
hypergeometric functions:

FF1�k,�m,p,q� =
2F1�1,p + q +

1

2
;p + q +

3

2
;

k2a2

k2a2 − �m
2 �

k2a2 − �m
2

�A29�

FF4�k,�m,p,q� =
2F1�1,p + q +

3

2
;p + q +

5

2
;

k2a2

k2a2 − �m
2 �

k2a2 − �m
2 .

�A30�

The solutions18 to the individual integral terms II in Eq.

�96� are given by
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II1�k,�m,�n
*� = �

0

� 2k2a2J0
2�ka�t2 + 1�

�k2a2�t2 + 1� − �m
2 ��k2a2�t2 + 1� − �n

*2�
dt

= 2ka

p=0

P



q=0

Q
J2p�ka�J2q�ka�

�1 + �p0��1 + �q0���n
*2 − �m

2 �


�FI1a�k,�m,p,q� − FI1a�k,�n
*,p,q�

− FI1b�k,�m,p,q� + FI1b�k,�n
*,p,q�� , �A31�

II2�k,�m� = �
0

� 2kaJ0�ka�t2 + 1�J1�ka�t2 + 1�
�t2 + 1�k2a2�t2 + 1� − �m

2 �
dt

= 2

p=0

P



q=0

Q
�2q + 1�J2p�ka�J2q+1�ka�

�1 + �p0�
�FI2a�k,�m,p,q�

+ FI2b�k,�m,p,q�� , �A32�

II3�k,�m,�n
*�

= �
0

� 2k3a3�t2 + 1J0�ka�t2 + 1�J1�ka�t2 + 1�
�k2a2�t2 + 1� − �m

2 ��k2a2�t2 + 1� − �n
*2�

dt

= 2

p=0

P



q=0

Q
�2q + 1�J2p�ka�J2q+1�ka�

�1 + �p0���m
2 − �n

*2�
�FI3�k,�n

*,p,q�

− FI3�k,�m,p,q� + k2a2�FI2a�k,�m,p,q�

− FI2a�k,�n
*,p,q�� + �m

2 FI2b�k,�m,p,q�

− �n
*2FI2b�k,�n

*,p,q�� , �A33�

II4�k,�m� = �
0

� 2k2a2J1
2�ka�t2 + 1�

k2a2�t2 + 1� − �m
2 dt

= 2

p=0

P



q=0

Q
�2p + 1��2q + 1�J2p+1�ka�J2q+1�ka�

ka


�k2a2FI4a�k,�m,p,q� − FI4b�k,�m,p,q�

+ �m
2 FI4c�k,�m,p,q�� , �A34�

II5�k,�m,�n
*� = �

0

� 2k4a4�t2 + 1�J1
2�ka�t2 + 1�

�k2a2�t2 + 1� − �m
2 ��k2a2�t2 + 1� − �n

*2�
dt

= 2

p=0

P



q=0

Q
�2p + 1��2q + 1�J2p+1�ka�J2q+1�ka�

ka��m
2 − �n

*2�


�k4a4�FI4a�k,�m,p,q� − FI4a�k,�n,p,q��

− �k2a2 + �m
2 �FI4b�k,�m,p,q� + �k2a2

+ �n
*2�FI4b�k,�n

*,p,q� + �m
4 FI4c�k,�m,p,q�

− �n
*4FI4c�k,�n

*,p,q�� , �A35�

II6�k� = �
0

� 2J1
2�ka�t2 + 1�

t2 + 1
dt =

H1�2ka�
ka

, �A36�

in which H is the Struve function and the subfunctions FI are
defined by the following hypergeometric and hyperbolic

Bessel functions:
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FI1a�k,�m,p,q� =
3F4�1,1,

3

2
;
3

2
− p − q,

3

2
+ p − q,

3

2
− p + q,

3

2
+ p + q;k2a2 − �m

2 �
��p − q − 1/2�2�p + q − 1/2�2

, �A37�

FI1b�k,�m,p,q� =
2�I2p��k2a2 − �m

2 �I2q��k2a2 − �m
2 �

�k2a2 − �m
2

, �A38�

FI2a�k,�m,p,q� =
3F4�1,

3

2
,2;

3

2
− p − q,

3

2
+ p − q,

5

2
− p + q,

5

2
+ p + q;k2a2 − �m

2 �
��p − q − 3/2�3�p + q − 1/2�3

, �A39�

FI2b�k,�m,p,q� =
2�I2p��k2a2 − �m

2 �I2q+1��k2a2 − �m
2 �

k2a2 − �m
2 , �A40�

FI3�k,�m,p,q� = 2
3F4�1

2
,1,1;

1

2
− p − q,

1

2
+ p − q,

3

2
− p + q,

3

2
+ p + q;k2a2 − �m

2 �
��p − q − 1/2��p + q + 1/2�

, �A41�

FI4a�k,�m,p,q� = 3
3F4�1,2,

5

2
;
3

2
− p − q,

5

2
+ p − q,

5

2
− p + q,

7

2
+ p + q;k2a2 − �m

2 �
2��p − q − 3/2�4�p + q − 1/2�4

, �A42�

FI4b�k,�m,p,q� =
3F4�1,1,

3

2
;
1

2
− p − q,

3

2
+ p − q,

3

2
− p + q,

5

2
+ p + q;k2a2 − �m

2 �
��p − q − 1/2�2�p + q + 1/2�2

, �A43�

FI4c�k,�m,p,q� =
2�I2p+1��k2a2 − �m

2 �I2q+1��k2a2 − �m
2 �

�k2a2 − �m
2 �3/2 . �A44�
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