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Radiation characteristics are calculated for a circular planar sound source in free space with a
uniform surface pressure distribution, which can be regarded as a freely suspended membrane with
zero mass and stiffness. This idealized dipole source is shown to have closed form solutions for its
far-field pressure response and radiation admittance. The latter is found to have a simple
mathematical relationship with the radiation impedance of a rigid piston in an infinite baffle. Also,
a single expansion is derived for the near-field pressure field, which degenerates to a closed form
solution on the axis of symmetry. From the normal gradient of the surface pressure, the surface
velocity is calculated. The near-field expression is then generalized to an arbitrary surface pressure
distribution. It is shown how this can be used as a simplified solution for a rigid disk in free space
or a more realistic sound source such as pre-tensioned membrane in free space with non-zero mass
and a clamped rim. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2839891�
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I. INTRODUCTION

The resilient disk in free space is the dipole complement
of the rigid disk in an infinite baffle. Together with a few
variants,1 these are the only axisymmetric planar sources that
yield compact closed-form solutions for their axial and far-
field pressure responses and radiation impedances. Inter-
changing the boundary conditions leads to another comple-
mentary pair of axisymmetric planar sources, namely the
resilient disk in an infinite baffle and rigid disk in free space.
These are slightly more complicated, but the solutions are
also applicable to diffraction problems using Babinet’s
principle,2 as modified by Bouwkamp.3 The reason for the
extra complexity is the mixture of velocity and pressure
boundary conditions in the plane of the disk. In a baffle, the
resilient disk has a uniform driving pressure across its sur-
face and zero velocity beyond its rim. Early solutions to this
problem involved iterative methods based upon oblate sphe-
roidal wave functions.3,4 An alternative approach5 is to use
the King integral, which is similar to the Rayleigh6 integral
except that the Green’s function in cylindrical coordinates
�which has been termed the Lamb–Sommerfeld integral� is
used, as opposed to the rotationally symmetric spherical
Green’s function. The disk velocity distribution can be rep-
resented by a trial function which itself is based upon the
solution to the free space wave equation in oblate spheroidal
coordinates.

The rigid disk in free space, conversely, has uniform
velocity across its surface and zero pressure beyond its rim,
so that a similar approach7 can be applied, but using a trial
function for the disk pressure distribution instead. Sets of
simultaneous equations are then developed and solved nu-
merically for the unknown trial function coefficients. A simi-
lar approach can also be applied to fluid-structure coupled
problems,8–12 where neither the disk velocity nor pressure
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distributions are uniform, and so the coupled disk and free
space wave equations have to be solved simultaneously.

The simplest monopole planar source is the rigid disk
�or piston� in an infinite baffle, which has a velocity bound-
ary condition on both its face and the surrounding baffle.
Remarkably, this was first derived by Rayleigh6 before the
direct radiator loudspeaker had even been invented,13 yet it
has been widely accepted as a model for such when mounted
in a box near a wall or, even better, mounted directly in a
wall as commonly found in recording studios. The model is
useful in the frequency range up to the first diaphragm
breakup mode.

Unfortunately, the Rayleigh integral is not particularly
amenable to numerical calculation of the near-field pressure,
especially at high frequencies. The integrand is oscillatory
and the Green’s function is singular at the source. Hence
there has been a strong motivation to find alternative meth-
ods, especially those using fast converging expansions. A
useful review of previous literature relating to the baffled
planar piston was provided by Harris,14 which includes some
early movable origin schemes, whereby the origin of the co-
ordinate system was moved to the same radial distance as the
observation point when projected onto the plane of the radia-
tor. Later, Hasagawa et al.15 moved the origin axially in front
of the radiator in order to achieve convergence in the imme-
diate near field. Recently, Mast and Yu16 have supplied an
elegant single-expansion solution in a similar manner, but
locking the origin in the same plane as the observation point.
It is shown in this paper how a similar expansion can be
obtained for the resilient disk. Also, apodized radiators have
been studied by Kelly and McGough.17

The resilient disk in free space is the simplest dipole
planar source, having a uniform driving pressure across its
face and zero pressure extending beyond its rim. It can be
used as an approximate model for unbaffled loudspeakers of
the electrostatic or planar magnetic type, in which it is as-
sumed that a perfectly uniform driving pressure is applied to

a very light flexible membrane diaphragm in free space.
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Walker18 pointed out that such a source is acoustically trans-
parent, in that it does not disturb the field around it, and used
this idealized model to derive the far-field on-axis pressure
response of an electrostatic loudspeaker, which provides a
useful approximation over the loudspeaker’s working range.
However, it should be noted that the model assumes a freely
suspended membrane, whereas in reality it is usually
clamped at the rim, which effectively removes the singularity
from the rim of the idealized model.

Bouwkamp3 solved the real radiation admittance �or
conductance, aka transmission coefficient�, but the imaginary
radiation admittance �or susceptance� has remained hitherto
unsolved. An alternative derivation to that of Bouwkamp for
the conductance is provided here, which is based upon the
dipole version of the King19 integral. Although this approach
has previously been used by Morse and Ingard,20 they did
not solve the equations for the conductance or susceptance,
but presented approximate solutions based upon an oscillat-
ing rigid sphere, together with the correct far-field expres-
sion. Here, a formal derivation is presented, using known
identities, which shows a simple relationship between the
admittance of a resilient disk and the impedance of a rigid
disk.

In Sec. II of this paper, the boundary conditions of the
problem are set out, after which a solution to the free space
wave equation using the dipole King integral is presented in
Sec. III, following the approach of Morse et al. In Sec. IV
the radiation conductance and susceptance are rigorously de-
rived and it is shown how these relate to the resistance and
reactance of a rigid disk in an infinite baffle. Some remarks
on an earlier attempt by the author to solve the susceptance
integral by symbolic computation are also included.

In Sec. V, a solution to the free space equation using the
dipole Rayleigh integral is derived, where the Green’s func-
tion is expanded using the Gegenbauer addition theorem �or
multipole expansion�. This leads to a single-expansion ex-
pression for the pressure field when the distance from the
center of the disk to the observation point is greater than the
disk’s radius. A solution for a planar axisymmetric source
with an arbitrary surface pressure distribution is also in-
cluded. In Sec. VI, the paraxial pressure field is derived,
which converges in the immediate near field and is again a
single expansion, reducing to a single term, or closed-form
solution, on the axis of symmetry. From the paraxial solu-
tion, the expression for the surface-velocity distribution,
given in Sec. VII, is fairly straightforward to derive due to
the fact that the paraxial solution is in cylindrical coordi-
nates. This makes it fairly easy to take the normal derivative
of the pressure with respect to the axial ordinate at the sur-
face of the disk. Finally, in Sec. VII, the expression for the
far-field pressure is presented. Although this expression is
nothing new, it is interesting to compare the beam pattern
with that of a rigid disk and it is shown that, in the case of an
electrostatic loudspeaker, this gives the same on-axis pres-
sure as Walker’s equation.

The general aim of this paper is to provide a full set of
radiation characteristics of the resilient disk in free space and
to show that they generally have simple relationships with

those of a rigid disk in an infinite baffle.
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II. BOUNDARY CONDITIONS

The infinitesimally thin resilient disk shown in Fig. 1
has a radius a and lies in the w plane with its center at the
origin. Due to axial symmetry, the tangential ordinate � of
the coordinate system for the observation point P can be
ignored. Hence it is simply defined, in spherical coordinates,
by the radial and azimuthal ordinates r and �, respectively or,
in cylindrical coordinates, by the radial and axial ordinates w
and z, respectively. The infinitesimally thin membrane-like
resilient disk is assumed to be perfectly flexible, has zero
mass, and is free at its perimeter. It is driven by a uniformly
distributed harmonically varying pressure p̃0 and thus radi-
ates sound from both sides into a homogeneous loss-free
acoustic medium. In fact, there need not be a disk present at
all and instead the driving pressure could be acting upon the
air particles directly. However, for expedience, the area over
which this driving pressure is applied shall be referred to as
a disk from here onwards. The pressure field on one side of
the xy plane is the symmetrical “negative” of that on the
other, so that

p̃�w,z� = − p̃�w,− z� . �1�

Consequently, there is a Dirichlet boundary condition in the
plane of the disk where these equal and opposite fields meet

p̃�w,0� = 0, a � w � � . �2�

On the front and rear surfaces of the disk, the pressures are
p̃+ and p̃−, respectively, which are given by

p̃+�w0� = − p̃−�w0� = p̃0/2, 0 � w0 � a �3�

and k is the wave number given by k=� /c=2� /�, where �
is the angular frequency of excitation, 	 is the density of the
surrounding medium, c is the speed of sound in that medium,
and � is the wavelength. The annotation �denotes a harmoni-
cally time-varying quantity.

III. SOLUTION OF THE FREE-SPACE WAVE
EQUATION

Using the dipole King integral,19 the pressure distribu-
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FIG. 1. Geometry of the disk.
tion is defined by
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p̃�w,z� = �
0

2� �
0

a

�p̃+�w0� − p̃−�w0��



�

�z0
g�w,z�w0,z0��z0=0+w0dw0d�0, �4�

where the Green’s function20 is defined, in cylindrical coor-
dinates, by

g�w,z�w0,z0� =
i

4�
�

0

�

J0��w�J0��w0�
�

�
e−i��z−z0�d� , �5�

where

� = ��k2 − �2, 0 � � � k

− i��2 − k2, �  k
�6�

and Jn is the Bessel function of the first kind. Substituting
Eqs. �3�, �5�, and �6� in Eq. �4� and integrating over the
surface of the disk yields

p̃�w,z� =
ap̃0

2
�

0

�

J1��a�J0��w�e−i�zd� , �7�

where the following identity22 has been used

�
0

a

J0��w0�w0dw0 =
a

�
J1�a�� . �8�

IV. RADIATION ADMITTANCE

A. Admittance as an integral expression

The disk velocity ũ0�w� can be derived using the follow-
ing relationship for the normal pressure gradient:

ũ0�w� =
i

k	c

�

�z
p̃�w,z�	z=0+

=
ap̃0

2k	c
�

0

�

J1��a�J0��w��d� . �9�

For small k, this reduces to the Weber–Schafheitlin
integral21,22

ũ0��w��k→0 =
iap̃0

2k	c
�

0

�

J1��a�J0��w��d�

=
ip̃0

2ka	c 2F1
3

2
,
1

2
;1;

w2

a2 �
=

ip̃0E�w2/a2�
�ka	c


1 −
w2

a2 �−1

�
ip̃0

2ka	c
�1 − 
1 −

2

�
�w3

a3 
1 −
w2

a2 �−1

,

�10�

where E is the complete elliptic integral of the second kind.
Hence there is a singularity at the rim. Integrating the veloc-
ity from Eq. �9� over the area of the disk provides the total

˜
volume velocity U0 as follows:
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Ũ0 = �
0

2� �
0

a

ũ0�w�wdwd� =
�a2p̃0

k	c
�

0

�

J1
2��a�

�

�
d� ,

�11�

where Eq. �8� has again been used. The acoustic radiation
admittance is then given by

yar =
Ũ0

p̃0

=
Sũ0

p̃0

=
S

2	c
�GR�k� − iBR�k�� , �12�

where GR is the normalized conductance given by

GR�k� =
2

k
�

0

k �k2 − �2

�
J1

2��a�d� , �13�

BR is the normalized susceptance given by

BR�k� =
2

k
�

k

� ��2 − k2

�
J1

2��a�d� , �14�

and S=�a2 is the surface area of the disk.

B. Solution of the real integral

Substituting �=k sin � and �=ka in Eq. �13� yields

GR��� = 2�
0

�/2 cos2�

sin �
J1

2�� sin ��d� , �15�

which, after differentiating with respect to �, gives

d

d�
GR��� = 2�

0

�/2

J1�� sin ��


 �J0�� sin �� − J2�� sin ���cos2�d� . �16�

Using the following identities23

J1�� sin ��J0�� sin ��

=
2

�
�

0

�/2

cos �J1�2� sin � cos ��d� �17�

and

J1�� sin ��J2�� sin ��

= −
2

�
�

0

�/2

cos 3�J1�2� sin � cos ��d� �18�

together with22

cos � + cos 3� = 2 cos � cos 2� , �19�

Eq. �16� becomes

d

d�
GR��� =

8

�
�

0

�/2

cos � cos 2�


 �
0

�/2

J1�2� cos � sin ��cos2�d�d� . �20�

The integral over � is split into two using cos2�=1−sin2�
22
and then solved with the help of the following identities:
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�
0

�/2

J1�� sin ��d� =� �

2�
H1/2��� =

1 − cos �

�
, �21�

�
0

�/2

J1�� sin ��sin2�d� =� �

2�
J3/2��� =

sin �

�2 −
cos �

�
,

�22�

where Hn is the Struve function and �=2� cos �, so that

d

d�
GR��� =

8

�
�

0

�/2

cos � cos 2�
 1

�
−

sin �

�2 �d� . �23�

The integral of the first term in the bracket vanishes and
using the identity cos 2�=2 cos2�−1, gives

d

d�
GR��� =

2

��2�
0

�/2 sin�2� cos ��
cos �

d�

−
4

��2�
0

�/2

sin�2� cos ��cos �d� . �24�

The first integral in Eq. �24� is differentiated to give22

d

d�
�

0

�/2 sin�2� cos ��
cos �

d� = 2�
0

�/2

cos�2� cos ��d�

= �J0�2�� . �25�

The second is solved using the identity22

�
0

�/2

sin�2� cos ��cos �d� =
�

2
J1�2�� . �26�

Hence

d

d�
GR��� =

2

�2
� J0�2��d� − J1�2��� , �27�

or using the product rule

�
d

d�
GR��� =

2

�

� J0�2��d� − J1�2���

=
d

d�
�GR��� − GR��� . �28�

Let the solution be

GR��� = 1 −
J1�2��

�
−

2

�

� J0�2��d� − J1�2���

= 1 +
J1�2��

�
−

2

�
� J0�2��d� . �29�

Then22

d

d�
�GR��� = 1 + J0�2�� − J2�2�� − 2J0�2�� = 1 −

J1�2��
�

,

�30�

which is the radiation resistance of a rigid disk in an infinite
baffle.7,19 It can easily be seen that Eqs. �29� and �30� satisfy

24
Eq. �28�. With help from the following identity:
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� J0�2��d� = �
0

�

J0�2��d�

= �J0�2�� + ��



J1�2��H0�2�� − J0�2��H1�2��

2
, �31�

the final solution is then given by

GR�ka� = 1 +
J1�2ka�

ka
− 2J0�2ka� − ��J1�2ka�H0�2ka�

− J0�2ka�H1�2ka�� �
k2a2

6
, ka � 0.5. �32�

C. Solution of the imaginary integral

Substituting �=k sin � and �=ka in Eq. �14� yields

BR��� = 2i�
��/2�+i0

��/2�+i� cos2�

sin �
J1

2�� sin ��d� , �33�

which, after differentiating with respect to �, gives

d

d�
BR��� = 2i�

��/2�+i0

��/2�+i�

J1�� sin ��


 �J0�� sin �� − J2�� sin ���cos2�d� . �34�

Using the identities of Eqs. �17�–�19�, Eq. �34� becomes

d

d�
BR��� =

8i

�
�

0

�/2

cos � cos 2�


 �
��/2�+i0

��/2�+i�

J1�2� cos � sin ��cos2�d�d�

�35�

and let t=sin � so that

d

d�
BR��� = −

8

�
�

0

�/2

cos � cos 2�


 �
1

�

J1�2� cos �t��t2 − 1dtd� . �36�

The integral over t is then solved with the help of the fol-
lowing identity:22

�
1

�

J1��t��t2 − 1dt =
cos �

�2 , �37�

where �=2� cos �, so that

d

d�
BR��� = −

2

��2�
0

�/2 cos 2� cos �

cos �
d� . �38�

2
Using the identity cos 2�=2 cos �−1, gives

Tim John Mellow: Resilient disk in free space 1883



d

d�
BR��� =

2

��2�
0

�/2 cos���
cos �

d�

−
4

��2�
0

�/2

cos���cos �d� . �39�

The first integral in Eq. �39� is differentiated to give22

d

d�
�

0

�/2 cos�2� cos ��
cos �

d� = − 2�
0

�/2

sin�2� cos ��d�

= − �H0�2z� . �40�

The second is solved using the identity22

�
0

�/2

cos���cos �d�

=
d

d�
�

0

�/2 � cos�2� cos ��cos �d�d�

=
d

d�
�

0

�/2 sin�2� cos ��
2

d� =
d

d�

�H0�2��
4

=
�H−1�2��

2
.

�41�

Hence

d

d�
BR��� = −

2

�2
� H0�2��d� + H−1�2��� , �42�

or using the product rule

�
d

d�
BR��� = −

2

�

� H0�2��d� + H−1�2���

=
d

d�
�BR��� − BR��� . �43�

Let the solution be

BR��� =
H1�2��

�
+

2

�

� H0�2��d� + H−1�2���

=
4

��
−

H1�2��
�

+
2

�
� H0�2��d� . �44�

Then22

d

d�
�BR��� = H0�2�� + H2�2�� −

4�

3�
=

H1�2��
�

, �45�

which is the radiation reactance of a rigid disk in an infinite
baffle.7,19 It can easily be seen that Eqs. �44� and �45� satisfy
Eq. �43�. With help from the following identity22 �after sub-
stituting �=bx1/2, �=0, and �=�=0�:

�
0

b

H0
a�

b
�d� =

ab

� 2F3
1,1;
3

2
,
3

2
,2;−

a2

4
� , �46�

where pFq is the hypergeometric function. Then, letting a

=2� and b=�, leads to
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� H0�2��d� = �
0

�

H0�2��d�

=
2�2

� 2F3
1,1;
3

2
,
3

2
,2;− �2� , �47�

so that the final solution is then given by

BR�ka� =
4

�ka
−

H1�2ka�
ka

+
4ka

� 2F3
1,1;
3

2
,
3

2
,2;− k2a2�

�
4

�ka
, ka � 0.5. �48�

The conductance GR and reactance BR are plotted in Fig. 2,
along with the conductance and reactance of a rigid disk in
free space for comparison. A third pair of curves shows the
conductance and reactance of an oscillating sphere, used as
approximations by Morse and Ingard,20 whereby GR�ka�
=k2a2 / �1+k2a2� and BR�ka�= �2+k2a2� / �ka+k3a3�. The
same results are shown as impedances in Fig. 3.
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D. Relationship between a resilient disk in free space
and a rigid disk in an infinite baffle

Suppose that the radiation resistance and reactance of a
rigid disk in an infinite baffle are denoted by RR�ka� and XR,
respectively, then

d

d�ka�
kaGR�ka� = RR�ka� = 1 −

J1�2ka�
ka

, �49�

or

GR�ka� =
1

ka
� RR�ka�d�ka� �50�

and

d

d�ka�
kaBR�ka� = XR�ka� =

H1�2ka�
ka

, �51�

or

BR�ka� =
1

ka

� XR�ka�d�ka� +

4

�
� , �52�

where GR and BR are the radiation conductance and suscep-
tance, respectively, of a resilient disk in free space as defined
in Eqs. �32� and �48�. The constant of integration 4 /� in Eq.
�52� comes from Eq. �44�. The low-frequency asymptotic
values of disks in general are related by

RR�baffled resilient� = RR�baffled rigid� = k2a2/2, �53�

XR�baffled resilient� = XR�unbaffled resilient� = �ka/4,

�54�

GR�unbaffled rigid� = GR�unbaffled resilient� = k2a2/6,

�55�

BR�unbaffled rigid� = 2BR�baffled rigid� = 3�/�4ka� .

�56�

E. Some remarks on the solution by symbolic
computation

This section reports an earlier attempt that had been
made to solve the susceptance integral by symbolic
computation,21 but the result contained some erroneous terms
and, without prior knowledge of the correct solution, it was
impossible to tell which terms were correct and which were
not. After substituting �=kt in Eq. �14�, the result of the
symbolic computation21 �after gathering a few terms� is

BR�ka� = 2�
1

� �t2 − 1

t
J1

2�kat�dt

= 2
2 − log�8ka� − �

�ka

+
4ka

3� 2F3
1,1;
3

2
,2,

5

2
;− k2a2� , �57�
which contains two erroneous negative terms. However, the
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correct form can be obtained from Eq. �52�, which, after
symbolic computation, gives

BR�ka� =
4

�ka
+

4ka

3� 2F3
1,1;
3

2
,2,

5

2
;− k2a2� . �58�

Admittedly this is a particularly difficult integral to compute
due to the oscillatory and slowly converging nature of the
integrand. These days, symbolic computation is fairly reli-
able, but it is always worth checking the results numerically
where possible, although in this case that is not so easy to do.
Similarly, symbolic computation21 of the integral in Eq. �50�
gives

GR�ka� = 1 − 1F2
1

2
;
3

2
,2;− k2a2� . �59�

V. NEAR-FIELD PRESSURE WHEN THE DISTANCE
FROM THE CENTER OF THE DISK TO THE
OBSERVATION POINT IS GREATER THAN THE DISK’S
RADIUS

A. Uniform pressure distribution

Using the dipole Rayleigh integral, the sound pressure at
the observation point P can be written as

p̃�r,�� = �
−�

� �
0

a

�p̃+�w0� − p̃−�w0��


g��r,��w0,�0�w0dw0d�0, �60�

where g� is the normal gradient of the Green’s function, as
the surface of integration shrinks back to the disk, defined by

g��r,��w0,�0� =
�

�z0
g�r,��w0,�0,z0��z=0+, �61�

and g�r ,� �w0 ,�0 ,z0� is the Green’s function in cylindrical-
spherical coordinates defined by g�r ,� �w0 ,�0 ,z0�
=e−ikr1 / �4�r1�, where r1

2=r2+w0
2+z0

2−2r�w0 cos �0 sin �
+z0 cos ��. The normal gradient of the Green’s function is
then given by

g��r,��w0,�0� = r cos �
1 + ikr0

r0
2 g�r,��w0,�0� , �62�

where

g�r,��w0,�0� =
e−ikr0

4�r0
�63�

and r0
2=r2+w0

2−2rw0 cos �0 sin �. In order to expand g�, it is
first necessary to reduce it to a simpler function of g by
eliminating some of the r0 terms. This can be achieved by
integrating g� with respect to � as follows:

� g��r,��w0,�0�d� = −
g�r,��w0,�0�

w0 cos �0
�64�
so that
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g��r,��w0,�0� = −
1

w0 cos �0

d

d�
g�r,��w0,�0� . �65�

The Green’s function of Eq. �63� can be expanded using the
following formula, which is a special case of Gegenbauer’s
addition theorem:22

g�r,��w0,�0� = −
ik

4�
�
p=0

�

�2p + 1�hp
�2��kr�


jp�kw0�Pp�cos �0 sin �� , �66�

where jp is the spherical Bessel function of the first kind and
hp

�2� is the spherical Hankel function.24 The Legendre func-
tion Pp can be expanded using the following addition
theorem22 �after setting one of the three angles in the original
formula to � /2�:

Pp�cos �0 sin ��

= Pp�0�Pp�cos �� + 2�
q=1

�

�− 1�qPp
−q�0�Pp

q�cos ��cos q�0.

�67�

Inserting Eqs. �65�–�67� in Eq. �60� while noting that

�
−�

� cos q�0

cos �0
d�0 = 2� sin

q�

2
, �68�

and applying the boundary condition of Eq. �3� leads to

p̃�r,�� = ikp̃0�
p=0

�

�2p + 1�hp
�2��kr��

0

a

jp�kw0�dw0


 �
q=1

�

�− 1�qPp
−q�0�

d

d�
Pp

q�cos ��sin
q�

2
. �69�

It is noted that Pp
−q�x��pq=0, so that the infinite limit of the

summation in q can be replaced with p. Also, the even terms
in p and q disappear so that

p̃�r,�� = ikp̃0�
p=0

�

�4p + 3�h2p+1
�2�


�kr��
0

a

j2p+1�kw0�dw0�2p+1�cos �� , �70�

where

�2p+1�cos �� = �
q=0

p

�− 1�qP2p+1
−2q−1�0�

d

d�
P2p+1

2q+1�cos �� . �71�

Defining a new function

�2p+1�cos �� =
���− 1�pp!

��p + �3/2��
�2p+1�cos �� �72�

gives �1�cos ��=cos �, �3�cos ��= �5 cos3�−3 cos �� /2,
�5�cos ��= �63 cos5�−70 cos3�+15 cos �� /8, and �7�cos ��
= �429 cos7�−693 cos5�+315 cos3�−35 cos �� /16. Hence it

22
can be shown that

1886 J. Acoust. Soc. Am., Vol. 123, No. 4, April 2008
�2p+1�cos �� =
1

22p+1 �
q=0

p
�− 1�q��4p − 2q + 3��cos ��2p−2q+1

q ! ��2p − q + 2���2p − 2q + 2�

= P2p+1�cos �� , �73�

which, after inserting Eqs. �72� and �73� in Eq. �70�, gives

p̃�r,�� =
ikp̃0

��
�
p=0

�

�− 1�p�4p + 3�
��p + �3/2��

p!


 �
0

a

j2p+1�kw0�dw0h2p+1
�2� �kr�P2p+1�cos �� .

�74�

This is equivalent to an expression previously presented by
Bouwkamp,3 although no derivation was provided. A simpler
solution25 than Bouwkamp’s to the integral over w0 can be
written as

�
0

a

j2p+1�kw0�dw0

=
��

2k

 ka

2
�2p+2

1F2�p + 1;p + 2,2p + �5/2�;− k2a2/4�
�p + 1���2p + �5/2��

,

�75�

so that, after truncating the summation limit to P, the final
expression for the pressure field becomes

p̃�r,�� = − ip̃0�
p=0

P
�− 1�p��p + �3/2��

��p + 2���2p + �3/2��
 ka

2
�2p+2


 1F2
p + 1;p + 2,2p +
5

2
;−

k2a2

4
�


h2p+1
�2� �kr�P2p+1�cos �� . �76�

This expansion converges providing r�a, and was used for
the region w �a. It is similar in form to the “outer” solution
obtained by Mast and Yu16 for the piston in an infinite baffle,
except that the current solution is an expansion of the odd
terms of the spherical Hankel and Legendre functions as op-
posed to even ones. These odd eigenfunctions are a result of
the odd boundary condition given by Eq. �1�. Let an error
function be defined by

��r,�� =
�p̃�r,�� − p̃ref�r,���

�p̃�r,���
, �77�

where the reference pressure is that obtained using the origi-
nal dipole Rayleigh integral or Eq. �60� with the unexpanded
Green’s function normal gradient of Eq. �62�. The calcula-
tions were performed using 30 digit precision with P�4ka,
whereby P was rounded down to the nearest integer value.
This produced values of � typically less than 0.00001, but
rising to around 0.1 in the immediate vicinity of the rim �r
=a and �=� /2� where convergence was slowest. At ka
=6�, the expansion calculated four times faster than numeri-
cal integration. Furthermore, the calculation time for the ex-
pansion roughly doubles for every doubling of ka, whereas
for numerical integration it nearly quadruples for every dou-

bling of ka.
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B. Generalization to an arbitrary surface pressure
distribution

Let the arbitrary surface pressure distribution be defined
by the power series

p̃+�w0� = − p̃−�w0�

= �
m=0

M

Ãm
1 −
w0

2

a2 �m+1/2

, 0 � w0 � a , �78�

where, in the case of a rigid disk in free space,7 the unknown

series coefficients Ãm are related to normalized coefficients

�m by Ãm= �̃m�m+ �3 /2��ka	cũ0, or, in the case of a mem-

brane in free space,11 by Ãm= �̃m�m+ �3 /2��p̃I /2. Inserting the
above expressions in Eq. �60� and using the identity21

�
0

a 
1 −
w0

2

a2 �m+1/2

j2p+1�kw0�dw0

=
��

2k

��m + �3/2��p!

��p + m + �5/2����2p + �5/2��
 ka

2
�2p+2


 1F2
p + 1;p + m +
5

2
,2p +

5

2
;−

k2a2

4
� , �79�

leads to the final expression for the pressure field which is
given by

p�r,�� = 2i�
m=0

M

�m�
p=0

P
�− 1�p��p + �3/2��h2p+1

�2� �kr�P2p+1�cos ��
��2p + �3/2���m + �5/2��p


 
 ka

2
�2p+2

1F2
p + 1;p + m +
5

2
,2p +

5

2
;−

k2a2

4
�


 �ka	cũ0, Rigid disk

p̃I/2, Membrane
. �80�

where ũ0 is the disk velocity and p̃I is the membrane driving
pressure.

VI. NEAR-FIELD PRESSURE PARAXIAL SOLUTION

In order to find a solution which converges up to the
face of the disk, a trick previously used by Mast and Yu16

is to move the center of the coordinate system from the cen-
ter of the disk out to the same axial distance as the observa-
tion point. Referring to Fig. 1 the distance r0 from a point
source on the disk to the observation point is r0

2=r1
2+w2

−2r1w cos �0 sin �, where w=r sin �, r1=�z2+w0
2, and z

=r cos �. The angle � is defined by cos �=z /r1 and sin �
=w0 /r1. Putting these new parameters in Eq. �74� gives

p̃�w,z� =
ikp̃0

��
�
p=0

�

�− 1�p�4p + 3�
��p + �3/2��

��p + 1�



j2p+1�kw�

w
�

z

ra

h2p+1
�2� �kr1�P2p+1�cos ��r1dr1,

�81�

� 2 2
where ra= z +a . Let
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p̃�w,z� =
ip̃0

��kw
�
p=0

P

�− 1�p�4p + 3�



��p + �3/2��

��p + 1�
j2p+1�kw�f2p+1, �82�

where, after substituting �=kr1,

f2p+1 = �
kz

kra

h2p+1
�2� ���P2p+1
 kz

�
��d� . �83�

Then the following indefinite integral g2p+1 is denoted by

g2p+1��� =� h2p+1
�2� ���P2p+1
 kz

�
��d� , �84�

so that f2p+1=g2p+1�kra�−g2p+1�kz�. When p=0, the first term
is given by

g1��� =� h1
�2����P1
 kz

�
��d� = i

kz

�
e−i�, �85�

so that

f1 = i
 z

ra
e−ikra − e−ikz� . �86�

According to Hasagawa et al.,15 the remaining terms can be
determined from the following recursion formulas:

g2p+1��� + g2p−1��� = �h2p
�2����
P2p+1
 kz

�
� − P2p−1
 kz

�
�� ,

�87�

g2p+1�kz� + g2p−1�kz� = 0. �88�

Hence

f2p+1 = − f2p−1 + krah2p
�2��kra�
P2p+1
 z

ra
� − P2p−1
 z

ra
�� .

�89�

Thus the solution is given by the combination of Eqs. �82�,
�86�, and �89�, which converges for w2�a2+z2. Again, this
is essentially an odd term version of the “paraxial” expansion
obtained by Mast and Yu16 for the piston in an infinite baffle.
Toward the axis of symmetry, convergence is achieved with
fewer terms until only the first term of the expansion re-
mains, which is the closed-form axial solution. This can also
be derived directly by setting �=0 in Eq. �63� before inte-
grating over the surface to give

p̃�r,0� =
p̃0

2 
e−ikr −
r

�r2 + a2
e−ikr�r2+a2� . �90�

For comparison, the Backhaus and Trendelenburg axial
solution26 for a piston in an infinite baffle is

p̃�r,0� = 	cũ0�e−ikr − e−ik�r2+a2
� . �91�

The calculations for Eqs. �82�, �86�, and �89� were performed
using 30 digit precision for the region w�a with P�4kw,

whereby P was rounded down to the nearest integer value.
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Again, this produced values of � typically of the order of
0.00001, but rising to around 0.1 in the immediate vicinity of
the rim. For various values of ka, pressure fields are shown
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in Fig. 4 for a resilient disk in free space and in Fig. 5 for a
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rigid disk in free space. The latter were calculated using Eq.
�80� for r�a and, in the case of r�a, using similar formu-
lation to that previously derived for a membrane in free

11

0

1

2

3
0

1

2

3

0

0.2

0.4

0.6

0.8

1

0

1

2

0
0.5

1

1.5

2

0

1

2

3

0

1

2

0
0.5

1

1.5

1

2

3

0

0.5

1

1.5

0

1

2

3

0

1

2

0

0.5

1

1

2

3

ka = 1
w/a

z/a

ka = 10
w/a

z/a

ka = 6ππππ
w/a

z/a

0
~

~

uc

p

ρρρρ

0
~

~

uc

p

ρρρρ

0
~

~

uc

p

ρρρρ

FIG. 5. Near-field pressure of the rigid disk in free space for ka=1, 10, and
6�.
space.

Tim John Mellow: Resilient disk in free space



2

P
(

VII. SURFACE VELOCITY

Using the solutions for the near-field pressure from Eqs.
�82�, �86�, and �89�, the surface velocity is given by

ũ0�w� =
i

k	c

d

dz
p̃�w,z�	z=0+

= −
p̃0

	c��
�
p=0

�

�− 1�p�4p + 3�



��p + �3/2��

��p + 1�
f2p�

j2p+1�kw�
kw

, �92�

where

f0� = 1 − i
e−ika

ka
, �93�

f2p� = − f2p−2� − h2p
�2��ka�


��2p + 1�P2p�0� − �2p − 1�P2p−2�0�� . �94�

The magnitude and phase of the normalized velocity are
shown in Figs. 6 and 7, respectively, for various values of ka.
For small k, it can be shown to agree well with asymptotic
expression given by Eq. �10�.
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VIII. FAR-FIELD PRESSURE

A far-field expression can be derived using the usual
procedure,7,20 which involves an asymptotic version of Eq.
�62� for large r, giving

p̃�r,�� = −
iap̃0

4r
e−ikrD��� , �95�

where D��� is the directivity function, which is given by

D��� =
2J1�ka sin ��

sin �
cos � �96�

and plotted in Fig. 8 for various values of ka. The directivity
function of a rigid disk in free space is plotted in Fig. 9 for
comparison. Since D�0�=ka, the on-axis response is simply

p̃�r,0� = −
ika2p̃0

4r
e−ikr, �97�

which just gives a constant 6 dB/octave rising slope at all
frequencies. In the case of an electrostatic loudspeaker

1

3

FIG. 6. �Color online� Normalized
surface velocity magnitude of the re-
silient disk in free space.

1

= 10

FIG. 7. �Color online� Surface veloc-
ity phase of the resilient disk in free
space.
ka =
8

ka
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p̃0 =
EP

d
·

2Ĩin

i��a2 , �98�

where EP is the polarizing voltage, d is the membrane-

electrode separation, and Ĩin is the input static current, as-
suming that the motional current is negligible in comparison.
Substituting this in Eq. �97� yields
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FIG. 8. �Color online� Normalized far-field directivity function of the resil-
ient disk in free space.
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FIG. 9. �Color online� Normalized far-field directivity function of the rigid

disk in free space.

1890 J. Acoust. Soc. Am., Vol. 123, No. 4, April 2008
p̃�r,0� = −
EP

d
·

Ĩin

2�rc
e−ikr, �99�

which is Walker’s equation,18 albeit obtained by a slightly
different method.

IX. DISCUSSION

The results presented here are intended to provide a full
set of radiation characteristics for a fundamental axisymmet-
ric planar dipole source. Starting with the radiation admit-
tance and impedance, it can be seen from Figs. 2 and 3 that
in the case of unbaffled radiators, the rigid disk has ripples in
both the real and imaginary parts, whereas those of the resil-
ient disk are smooth almost monotonic functions, as are also
those of the oscillating rigid sphere �or Morse Ingard ap-
proximation�. These are entirely consistent with the results
previously found for baffled radiators.5 The solution pre-
sented for the susceptance integral contradicts a previous
statement7 made by the author that it could not be solved. At
least, that is how it seemed when trying to tackle it numeri-
cally. The integrand is strongly oscillatory and converges
more slowly than just about any other integral in fundamen-
tal sound radiation theory, due to the combination of the
singularity and acoustic short circuit at the rim. Also, an
attempt to solve it by symbolic computation gave somewhat
unexpected results as discussed in Sec. IV E.

At medium to high frequencies, the pressure field can be
divided into two regions: the Fresnel diffraction region in the
near field and the Fraunhofer diffraction region in the far
field. It is well understood that the Fresnel region is charac-
terized by complex non-propagating interference patterns,
whereas the Fraunhofer region is characterized by spheri-
cally propagating waves in a beam pattern with a strong cen-
tral lobe �Airy disk� accompanied by smaller side lobes �Airy
pattern�. At higher frequencies, a third “shadow region” be-
gins to form at the surface of the radiator which is charac-
terized by plane waves in a straight beam with the same
cross section as the radiator, like a virtual transmission line
in space. It appears from Figs. 4 and 5 that this shadow
region forms more readily at lower frequencies in the case of
the resilient disk, no doubt aided by the constant pressure
distribution at the surface of the disk. At ka=6�, the pres-
sure field fluctuations in the vicinity of the rigid disk are
considerably greater than for the resilient disk. Furthermore,
the axial pressure response of a rigid disk given by Eq. �91�
has nulls, whereas the resilient disk axial response given by
Eq. �90� is oscilliatory but with decreasing magnitude to-
wards the face of the disk.

In Figs. 6 and 7, the velocity magnitude and phase dis-
tributions are generally similar in shape to those of the resil-
ient disk in an infinite baffle, except that the magnitude rises
more rapidly towards the rim due to the acoustic short circuit
there in the absence of a baffle. This is also accompanied by
increased phase shift.

Previously, the author has stated that at high frequencies
the directivity function of the resilient disk in free space does
not converge towards that of a rigid disk in an infinite

6
baffle. This is not strictly true. They must converge eventu-
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ally because the only difference between them is a factor of
cos �, which produces the classic figure-of-eight dipole pat-
tern at low frequencies. As the directivity pattern becomes
narrower, this factor has less of an effect. However, the con-
vergence is rather slow. At ka=10, the beam pattern of an
unbaffled rigid disk, shown in Fig. 9, is rather similar to that
of a baffled one, except that the latter has nulls due to the
velocity boundary conditions on both the disk and surround-
ing baffle. This can also be derived by taking the Hankel
transform of the velocity distribution in the plane of the disk,
which is a rotationally symmetric step function. By contrast,
the side lobes of the unbaffled resilient disk, shown in Fig. 8,
are somewhat smaller. This pattern also has nulls due to the
pressure boundary conditions on both the disk and surround-
ing plane.

X. CONCLUSIONS

Closed-form expressions have been derived for the ra-
diation admittance of a resilient disk in free space and these
have been shown to have a simple relationship with the ra-
diation impedance of a rigid piston in an infinite baffle. Also,
rapidly converging single expansions have been derived for
the near-field pressure and surface velocity. Furthermore, the
near-field pressure has been generalized to an arbitrary sur-
face pressure distribution, yielding a double expansion,
whereas a triple expansion was previously derived by the
author for a membrane in free space.11 Hence the solution is
now similar in form to that of the membrane in an infinite
baffle.11
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