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The Rayleigh integral describing the near-field pressure of an axisymmetric planar monopole source
with an arbitrary velocity distribution is solved with a method similar to that used by Mast and Yu
�J. Acoust. Soc. Am. 118�6�, 3457–3464 �2005�� for a rigid disk in an infinite baffle. The
closed-form solution is in the form of a double expansion, which is valid for distances from the
observation point to the center of the source that are greater than its radius. However, for the
remaining immediate near field, the King integral is solved using a combination of Gegenbauer’s
summation theorem and the Lommel expansion, resulting in a solution which is in the form of a
triple expansion, reducing to a double expansion along the source’s axis of symmetry. These
relatively compact solutions in analytic form do not require numerical integration and therefore
present no numerical difficulties except for a singularity at the rim. As an example of a monopole
source with an arbitrary velocity distribution, equations describing the radiation characteristics of a
resilient disk in an infinite baffle are derived. Using Babinet’s principle, the pressure field of a plane
wave passing through the complementary hole in an infinite rigid screen is calculated.
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I. INTRODUCTION

Despite the advances in acoustical simulation tools in
recent years, it is still useful to have some canonical forms
which can be rigorously calculated in a direct manner with-
out any need for numerical integration, iteration, or least-
squares minimization. Although such solutions are generally
restricted to simple geometries �usually axisymmetric�, they
provide useful benchmarks for simulation. Most canonical
forms, such as the spherical polar cap on a sphere,1 are based
upon spherical geometry.

Recently, Mast and Yu2 derived an elegant pair of ex-
pansions for the pressure field of a rigid disk in an infinite
baffle, based upon solutions to the Rayleigh3 integral. The
first expansion, or “outer” solution, provides a fast converg-
ing series for distances from the center of the disk to the
observation point greater than the disk’s radius, and can be
regarded as an improved version of Stenzel’s solution4 using
functions commonly found in text books as opposed to Sten-
zel’s bespoke ones, which were based upon Lommel’s poly-
nomials.

Stenzel also derived what could be termed an “inner”
solution for distances from the center of the disk to the ob-
servation point less than the disk’s radius. This expansion
can also be updated using hypergeometric function solutions
to the radial integrals, which the author has already tried.
However, although it converges in a similar fashion to the
outer expansion, this is not the best solution available. In all
of the aforementioned solutions, the origin of the spherical
coordinate system is located at the center of the disk.

Hasegawa et al.5 provided an expansion, together with
recursion formulas, based upon an ingenious spherical coor-
dinate system, the origin of which being located on the disk’s
axis of symmetry some distance in front of it. Mast and Yu2

have developed this by locking the origin of the coordinate

system to the same axial distance from the disk as the obser-
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vation point, while keeping it on the axis of symmetry. This
leads to their second expansion or “paraxial” solution for
which the region of convergence looks like a funnel, falling
just within the disk’s perimeter at its surface and then spread-
ing out to form a cone covering an angle of 45° either side of
the axis of symmetry with the apex located at the disk’s
center. The limit of this expansion decreases to a single term
on the axis of symmetry.

Hence, the Rayleigh integral has been shown to provide
simple single expansion solutions for a rigid disk. In this
paper, it is also shown to provide a similar outer solution for
a monopole source with an arbitrary velocity distribution.
However, for an inner or paraxial solution this does not ap-
pear to be the case and Stenzel6 tackled the problem in a
somewhat formidable analysis.

Surprisingly little attention has been paid to the King
integral,7–9 which could be solved by means of a double
expansion. Greenspan10 calculated it numerically to illustrate
some special cases, such as the on-axis pressure, radiation
force, and power for various monopole velocity distributions,
as well as the transient response. Using two Lommel expan-
sions, Williams11 recast the King integral in a mathematically
beautiful form, which he then used to illustrate some of its
properties. Unfortunately, it can be shown that the integral in
this expanded form yields a converging solution for only part
of the near-field space. When the reverse Lommel expan-
sions are applied, it is not obvious how to calculate the sub-
sequent expression numerically and no results are provided.

In the current paper, the King integral is expanded using
a combination of the Lommel expansion and the Gegenbauer
summation theorem in order to ensure convergence. This
yields a paraxial solution, which together with the outer so-
lution, exhibits similar convergence characteristics to the ex-

pansions of Mast and Yu for the rigid disk.
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A general aim of this paper is to present the most direct
solutions possible for calculating the sound radiation charac-
teristics of axisymmetric monopole sources, especially when
the velocity distribution is unknown. In this respect, it is
intended to complement a recent paper by Kärkkäinen
et al.,12 in which a solution was presented for calculating the
radiation characteristics of dipole sources with unknown
pressure distributions. The surface pressure distribution was
described using a trial function consisting of a power series
for which the coefficients were calculated by numerically
solving a set of simultaneous equations. The simultaneous
equations, in turn, had to be derived by analytically solving
the integrals in the dipole part of the Kirchhoff-Helmholtz
boundary integral formula �using the Green’s function in cy-
lindrical coordinates�. In this paper, a similar procedure is
followed, using a trial function for the surface velocity dis-
tribution and then solving the monopole part of the
Kirchhoff-Helmholtz boundary integral formula.

Furthermore, the methods derived here can also be ap-
plied to nonrigid sources with fluid-structure coupling, such
as plates and membranes. For example, similar formulation
appears in a study on membranes by Kärkkäinen et al.13

II. RESILIENT DISK IN AN INFINITE BAFFLE

A. Boundary conditions

The infinitesimally thin rigid disk shown in Fig. 1 lies in
the w plane with its center at the origin, where w is the radial
ordinate of the cylindrical coordinate system and z is the
axial ordinate. Due to axial symmetry, the polar ordinate �
of the spherical coordinate system can be ignored, so that the
observation point P is defined simply in terms of the radial
and azimuthal ordinates r and �, respectively. The infinitesi-
mally thin rigid baffle extends from the perimeter of the disk
to w=�. On the baffle, the velocity is zero and therefore so is
the normal pressure gradient. The infinitesimally thin
membrane-like resilient disk is assumed to be perfectly flex-
ible, has zero mass, and is free at its perimeter. It is driven by
a uniformly distributed harmonically varying pressure p̃0 and
thus radiates sound from both sides into a homogeneous loss-
free acoustic medium. In fact, there need not be a disk
present at all and instead the driving pressure could be acting

FIG. 1. Geometry of the disk in an infinite baffle.
upon the air particles directly. However, for expedience, the
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area over which this driving pressure is applied shall be re-
ferred to as a disk from here onwards. On the surface of the
disk and baffle, the following boundary conditions apply:

�

�z0
�p̃�w0,z0��z0=0+ = �− ik�cũ�w0� , 0 � w0 � a ,

0, w0 � a ,
� �1�

where

ũ0�w0� = �
m=0

�

Ãm	1 −
w0

2

a2 
m−�1/2�

, �2�

and k is the wave number given by

k =
�

c
=

2�

	
, �3�

where � is the angular frequency of excitation, � is the den-
sity of the surrounding medium, c is the speed of sound in

that medium, and 	 is the wavelength. The annotation ˜ de-
notes a harmonically time-varying quantity and replaces the
factor ei�t. It is worth noting that the index of the first term
of the expansion �m=0� is equal to −1/2, in order to satisfy
the boundary condition of infinite velocity at the perimeter,
as determined by Rayleigh.3 The same expansion can be ap-
plied to any velocity distribution, providing the velocity is
either infinite or zero at the perimeter. For example, in the
case of a circular membrane with a clamped rim, the index of
the first term would be equal to +1/2.

On the front and rear surfaces of the disk, the pressures
are p̃+ and p̃−, respectively, which are given by

p̃+ = − p̃− =
p̃0

2
. �4�

B. Solution of the free-space wave equation

Using the King integral, the pressure distribution is de-
fined by

p̃�w,z� = 2�
0

2� �
0

a

g�w,z�w0,z0�



�

�z0
�p̃�w0,z0��z0=0+w0dw0d�0, �5�

where the Green’s function14 is defined, in cylindrical coor-
dinates, by the Lamb15 or Sommerfeld16 integral,

g�w,z�w0,z0� =
i

4�
�

0

�

J0��w�J0��w0�
�

�
e−i��z−z0�d� , �6�

where

� = �k2 − �2. �7�

Substituting Eqs. �1�, �2�, and �6�, in Eq. �5� and integrating

over the surface of the disk yields
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p̃�w,z� = ka�c�
m=0

�

Ãm
	m +
1

2

�

0

� 	 2

a�

m−�1/2�


 J0�w��Jm+�1/2��a��
e−i�z

�
d� , �8�

where Sonine’s integral17 has been used as follows:

�
0

a 	1 −
w0

2

a2 
m−�1/2�

J0��w0�w0dw0 =
a2

2

	m +

1

2




	 2

a�

m+�1/2�

Jm+�1/2��a�� . �9�

Applying the boundary condition of Eq. �4� leads to

p̃0

2
= ka�c�

m=0

�

Ãm
	m +
1

2

�

0

� 	 2

a�

m−�1/2�


 J0�w��Jm+�1/2��a��
1

�
d� . �10�

C. Formulation of the coupled problem

Equation �10� can be written more simply as

�
m=0

�

�mIm�w,k� = 1, �11�

which is to be solved for the normalized power series coef-
ficients �m as defined by

�m =
2�cÃm

�m + 1/2�p̃0

. �12�

The integral Im�w ,k� can be split into two parts,

Im�w,k� = ImR�w,k� − iImI�w,k� , �13�

where the real part is given by

ImR�w,k� = ka
	m +
3

2

�

0

k 	 2

�a

m−�1/2�

Jm+�1/2�


��a�J0��w�
1

�k2 − �2
d� , �14�

and the imaginary part is given by

ImI�w,k� = ka
	m +
3

2

�

k

� 	 2

�a

m−�1/2�

Jm+�1/2�


��a�J0��w�
1

��2 − k2
d� . �15�

D. Solution of the real integral
Substitution of �=k sin � in Eq. �14� gives
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ImR�w,k� = ka
	m +
3

2

	 2

ka

m−�1/2��

0

�/2

�sin ���1/2�−m


 Jm+�1/2��ka sin ��J0�kw sin ��d� . �16�

The Bessel functions in Eq. �16� are defined by17

J0�kw sin �� = �
q=0

Q 	 kw

2

2q �− 1�q�sin ��2q

�q!�2 , �17�

Jm+�1/2��ka sin �� = �
r=0

R 	 ka

2

2r+m+�1/2�



�− 1�r�sin ��2r+m+�1/2�

r!
�r + m + 3/2�
, �18�

so that

ImR�w,k� = 2�
q=0

Q

�
r=0

R
�− 1�q+r
�m + 3/2�

�q!�2r!
�r + m + 3/2�	 ka

2

2�q+r+1�


 	w

a

2q�

0

�/2

�sin ��2�q+r�+1d� . �19�

Solution of the integral in Eq. �19� is enabled by use of the
following identity:18

�
0

�/2

�sin ��2�q+r�+1d� =
��
�q + r + 1�
2
�q + r + 3/2�

. �20�

Evaluating the integral over � yields

ImR�w,k� = ���
q=0

Q

�
r=0

R
�− 1�q+r
�m + 3/2�
�q + r + 1�

�q!�2r!
�r + m + 3/2�
�q + r + 3/2�


	 ka

2

2�q+r+1�	w

a

2q

. �21�

E. Solution of the imaginary integral

1. Transformation of the integral into complex form

The following procedure converts the infinite limit of
the integral in Eq. �15� into a finite one. First, the integral is
converted into a form which can be integrated in the com-
plex plane. The Bessel function Jn�x� can be written in terms
of the following pair of complex conjugate Hankel
functions:17

Jn�x� =
Hn

�1��x� + Hn
�2��x�

2
, �22�

which can now be used to separate ImI into two complex
conjugate integrals as follows:

ImI�w,k� =
ImI

�1� + ImI
�2�

2
, �23�

where, after substituting �=kt, the complex conjugate inte-

grals are given by
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ImI
�1� = 2
	m +

3

2

	 2

ka

m−�3/2��

1

�

J0�kwt�Hm+�1/2�
�1�


�kat�
t�1/2�−m

�t2 − 1
dt , �24�

ImI
�2� = 2
	m +

3

2

	 2

ka

m−�3/2��

1

�

J0�kwt�Hm+�1/2�
�2�


�kat�
t�1/2�−m

�t2 − 1
dt . �25�

Referring to the complex t plane of Fig. 2, the integrals ImI
�1�

and ImI
�2� can now be evaluated along contours ��1� and ��2�,

respectively. The contours are defined by

��1� = t � �Cr
�1� � CR

�1� � Ci
�1� � Cc

�1�� ,

Cr
�1� = �1,R� ,

CR
�1� = �Rei��0 � � � �/2� ,

Ci
�1� = �iR,i� ,

�26�
Cc

�1� = �ei���/2 � � � 0� ,

R → � ,

��2� symmetric to ��1� with respect to the real axis.

2. Contribution of CR
„1… and CR

„2…

The contributions along CR
�1� and CR

�2� vanish for R→�

FIG. 2. Infinite integration contours in the complex t plane.
due to the behavior of Hm+�1/2��t� as �t�→�.
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3. Contribution of Ci
„1… and Ci

„2…

Noting that �t2−1= i�1− t2, the integral along Ci
�1� can

be written

2
	m +
3

2

	 2

ka

m−�3/2��

i�

i

J0�kwt�Hm+�1/2�
�1� �kat�

t�1/2�−m

i�1 − t2
dt ,

�27�

which can be converted into an integral with real limits by
substituting t= is as follows:

− 2i�1/2�−m
	m +
3

2

	 2

ka

m−�3/2��

1

�

J0�ikws�Hm+�1/2�
�1�


�ikas�
s�1/2�−m

�1 + s2
ds . �28�

With help from the following identities:17

I0�x� = J0�ix� , �29�

K��x� = i�+1�

2
H�

�1��ix� , �30�

the integral can be written as

4i

�
�− 1�m
	m +

3

2

	 2

ka

m−�3/2��

1

�

I0�kws�Km+�1/2�


�kas�
s�1/2�−m

�1 + s2
ds . �31�

This integral is purely imaginary whereas the original is real
valued. Hence, there is zero net contribution along Ci

�1�. The
same is true for the contribution along Ci

�2� where �t2−1
=−i�1− t2.

4. Contribution of Cc
„1… and Cc

„2…

Finally, the contributions along the unity quarter circle
segments Cc

�1� and Cc
�2� can be calculated by using the substi-

tution t=ei�, so that the contribution along Cc
�1� becomes

R	2i
	m +
3

2

	 2

ka

m−�3/2��

�/2

0

J0�kwei��Hm+�1/2�
�1�


�kaei��
ei��3/2�−m��

�e2i� − 1
d�
 , �32�

and likewise the contribution along Cc
�2� becomes

R	2i
	m +
3

2

	 2

ka

m−�3/2��

−�/2

0

J0�kwei��Hm+�1/2�
�2�


�kaei��
ei��3/2�−m��

�e2i� − 1
d�
 , �33�

which is equal to Eq. �32�. As there are no poles or zeros
within the contours ��1� or ��2�, it can be stated that, accord-
ing to the residue theorem, the sum of the integrals around
each of these contours is equal to zero. Therefore, ImI can be

written as
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ImI�w,k� =
ImI

�1��w,k� + ImI
�2��w,k�

2
= − 2
	m +

3

2




	 2

ka

m−�3/2�

R	i�
0

�/2

J0�kwei��
ei��3/2�−m��

�e2i� − 1


 
Jm+�1/2��kaei�� + iYm+�1/2��kaei���d�
 .

�34�

5. Expansion of the Bessel functions and final
solution of the imaginary integral

A series expansion17 of the Neumann function in Eq.
�34� is given by

Ym+1/2�kaei�� = �
r=0

R 	 ka

2

2r−m−�1/2� �− 1�r+mei��2r−m−�1/2��

r!
�r − m + 1/2�
.

�35�

Letting sin �=ei� in Eqs. �17� and �18� and substituting
these together with Eq. �35� in Eq. �34� gives

ImI�w,k� = − 2�
q=0

Q

�
r=0

R

R		w

a

2q �− 1�q+r
�m + 3/2�

�q!�2r!
�r + m + 3/2�


 	 ka

2

2�q+r+1�

i�
0

�/2 e2i��q+r+1�

�e2i� − 1
d�

−
�− 1�q+r+m
�m + 3/2�
�q!�2r!
�r − m + 1/2�

	w

a

2q


 	 ka

2

2�q+r−m��

0

�/2 e2i��q+r−m+�1/2��

�e2i� − 1
d�
 .

�36�

Solution of the integrals in Eq. �36� is enabled by use of the
following identity:18

�
0

�/2 e2i��

�e2i� − 1
d� =

1

2�
	��
�� + 1�


�� + 1/2�

− 2F1	1

2
,�;� + 1;− 1
ei��
 . �37�

Evaluating the integral over � yields

ImI�w,k� = 2
	m +
3

2

R	�

q=0

Q

�
r=0

R

FY�q,r,m�


	 ka

2

2�q+r−m�+1	w

a

2q

− iFJ�q,r,m�


	 ka

2

2�q+r+1�	w

a

2q
 , �38�
where the subfunctions FY and FJ are given by
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FY�q,r,m� = �− 1�q+r+m	 2F1�1/2,�;� + 1;− 1�ei��

2��q!�2r!
�r − m + 1/2�

−
��
���

2�q!�2r!
�r − m + 1/2�
�� + 1/2�

 , �39�

FJ�q,r,m� = �− 1�q+r	 2F1�1/2,�;� + 1;− 1�ei��

2��q!�2r!
�r + m + 3/2�



− 	 ��
���
2�q!�2r!
�r + m + 3/2�
�� + 1/2�


 ,

�40�

where

� = q + r − m + 1/2, �41�

� = q + r + 1. �42�

However, for integer values of q and r, iFJ �q ,r ,m� is purely
imaginary and therefore makes no contribution to the real
part of ImI�w ,k�. Similarly, the ei��q+r−m+1/2� term of FY

�q ,r ,m� is also purely imaginary and can therefore be ex-
cluded. Thus, the final result can be written

ImI�w,k� = − ���
q=0

Q

�
r=0

R



�− 1�q+r+m
�m + 3/2�
�q + r − m + 1/2�
�q!�2r!
�r − m + 1/2�
�q + r − m + 1�


	 ka

2

2�q+r−m�+1	w

a

2q

. �43�

F. Calculation of the power series coefficients „final
set of simultaneous equations…

Truncating the infinite power series in �11� to order M
and equating the coefficients of �w /a�2q yields the final set of
M +1 simultaneous equations in �m as follows:

�
m=0

M

�mPq�ka� + imTq�ka���m = �q0, �44�

where P shall be named the Spence function as defined by

mPq�ka� = ���
r=0

M
�− 1�q+r�ka/2�2�q+r+1�

�q!�2r!�m + 3/2�r�q + r + 1�1/2
, �45�

and T shall be named the Stenzel function as defined by

mTq�ka� = ���
r=0

M
�− 1�q+r+m�ka/2�2�q+r−m�+1

�q!�2r!�m + 3/2�r−2m−1�q + r − m + 1/2�1/2
,

�46�

�q0 is the Kronecker delta function and �x�n the Pochhammer
symbol.19 P and T are the monopole counterparts to the di-
pole cylindrical wave functions12 B and S. These equations

are then solved for q=0,1 ,2 , . . . , M −1, M.
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G. Disk velocity

From Eq. �12� it follows that

Ãm =
�m�m + 1/2�p̃0

2�c
. �47�

After substituting this in Eq. �2�, the normalized disk veloc-
ity can be written as

2�cũ0�w0�
p̃0

= �
m=0

M

�m	m +
1

2

	1 −

w0
2

a2 
m−�1/2�

, 0 � w0 � a .

�48�

The magnitude and phase of the normalized velocity are
shown in Figs. 3 and 4, respectively, for various values of
ka.

H. Radiation admittance

The total volume velocity Ũ0 produced by the disk can
be found by integrating the disk velocity from �48� over the
surface of the disk as follows:

Ũ0 = �
0

2� �
0

a

ũ0�w0�w0dw0d�0 =
Sp̃0

2�c
�
m=0

M

�m, �49�

where S is the area of the disk given by S=�a2. The acoustic
radiation admittance is then given by

FIG. 3. Normalized surface velocity magnitude of the resilient disk.
FIG. 4. Normalized surface velocity phase of the resilient disk.

J. Acoust. Soc. Am., Vol. 120, No. 1, July 2006
yar =
Ũ0

p̃0

=
Sũ0

p̃0

=
S

2�c
�GR + iBR� , �50�

where GR is the normalized conductance given by

GR = �
m=0

M

R��m� �
8

�2 , ka � 0.5, �51�

and BR is the normalized susceptance given by

BR = �
m=0

M

I��m� �
4

�ka
, ka � 0.5. �52�

The real and imaginary admittances GR and BR are plotted in
Fig. 5 along with the actual admittance of a rigid disk for
comparison.

I. Far-field pressure response

In the case of the far-field response, it is more conve-
nient to use spherical coordinates so that the far-field polar
responses can be obtained directly. Rayleigh’s far-field
approximation14 is ideal for this purpose,

g�r,�,��w0,�0,z0� =
1

4�r
e−ik�r−w0 sin � cos��−�0�−z0 cos ��,

�53�

which is inserted, together with Eqs. �1� and �2�, in the fol-
lowing monopole part of the Kirchhoff-Helmholtz boundary
integral formula in spherical coordinates:

p̃�r,�,�� = 2�
0

2� �
0

a

�g�r,�,��w0,�0,z0��z0=0+



�

�z0
�p̃�w0,�0,z0��z0=0+w0dw0d�0. �54�

After integrating over the surface of the disk �while letting
�=� /2 so that cos��−�0�=sin �0�, the far-field pressure
is given by

p̃�r,�� = −
iap̃0

4r
e−ikrD��� , �55�

17

FIG. 5. Normalized radiation admittances of the rigid and resilient disk.
where the following identities have been used:
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1

2�
�

0

2�

eikw0 sin � sin �0d�0 = J0�kw0 sin �� , �56�

together with Eq. �9�, where �=k sin �. The directivity
function D��� is given by

D��� = ka�
m=0

M

�m
	m +
3

2

	 2

ka sin �

m+�1/2�

Jm+�1/2�


�ka sin �� . �57�

The on-axis pressure is obtained by setting �=0 in Eq. �53�
before inserting it into Eq. �54�. This results in an integral
which is similar to the one for the radiation admittance in Eq.
�49�. Hence,

D�0� = ka�
m=0

M

�m � �4i/� , ka � 0.5

ka , ka � 2.
� �58�

It is worth noting that the on-axis response is related to the
radiation admittance by D�0�=ka�GR+ iBR�. The asymptotic
expression for low-frequency on-axis pressure is then simply

p̃�r,0� �
a

�r
p̃0e−ikr, ka � 0.5, �59�

and likewise at high frequencies

p̃�r,0� � i
ka2

4r
p̃0e−ikr, ka � 2, �60�

which is the same as for a resilient disk in free space at all
frequencies. The on-axis response is shown in Fig. 6, calcu-
lated from the magnitude of D�0�. The normalized directivity
function 20 log10��D���� / �D�0��� is plotted in Fig. 7 for vari-
ous values of ka.

J. Near-field pressure when the distance from the
center of the disk to the observation point is greater
than the diaphragm’s radius

Using the monopole part of the Kirchhoff-Helmholtz
boundary integral formula,14 the sound pressure at the obser-

FIG. 6. Normalized far-field on-axis response of the resilient disk.
vation point P can be written as
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p̃�r,�� = 2�
0

2� �
0

a

g�r,��w0,�0�



�

�z0
�p̃�w0,z0��z0=0+w0dw0d�0, �61�

where a is the radius of the disk and g��r ,��w0,�� is the
Green’s function. The Green’s function is defined by

g�r,��w0,�0� =
e−ikr0

4�r0
, �62�

where

r0 = �r2 + w0
2 − 2rw0 cos �0 sin � , �63�

so that Eq. �61� becomes the Rayleigh integral. The Green’s
function of Eq. �62� can be expanded using the following
formula, which is a special case of Gegenbauer’s addition
theorem:17

g�r,��w0,�0� = −
ik

4�
�
p=0

�

�2p + 1�hp
�2�


�kr�jp�kw0�Pp�cos �0 sin �� , �64�

where hp
�2� is the spherical Hankel function.19,14 Substituting

Eqs. �64�, �1�, �2�, and �47� in Eq. �61� enables the integrals
in Eq. �61� to be separated as follows:

p�r,�� = −
k2p̃0

2�
�
p=0

� 	p +
1

2

hp

�2��kr��
m=0

�

�m�m + 1/2�


�
0

a 	1 −
w0

2

a2 
m−�1/2�

jp�kw0�w0dw0


�2�

Pp�cos �0 sin ��d�0. �65�

FIG. 7. Normalized far-field directivity function of the resilient disk.
0
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The Legendre function Pp can be expanded using the follow-
ing addition theorem17 �after setting one of the three angles
in the original formula to � /2�:

Pp�cos �0 sin �� = Pp�0�Pp�cos �� + 2�
q=1

�

�− 1�qPp
−q�0�


Pp
q�cos ��cos q�0, �66�

which leads to the identity

�
0

2�

Pp�cos �0 sin ��d�0 = 2�Pp�0�Pp�cos ��

+ 2�
q=1

�

�− 1�qPp
−q�0�Pp

q�cos ��



sin 2�q

q
= 2�Pp�0�Pp�cos ��, for integral q . �67�

It is also noted that17

P2p�0� =
��

p!
��1/2� − p�
=

�− 1�p
�p + �1/2��
��p!

, �68�

and

P2p+1�0� = 0, �69�

so that, after substituting Eqs. �67�–�69� in Eq. �65� and ex-
cluding the odd terms, only the radial integral remains as
follows:

p�r,�� = − ��k2p̃0�
p=0

� �2p + �1/2��h2p
�2��kr�

p!
��1/2� − p�


�
m=0

�

�m�m + 1/2� 
 �
0

a 	1 −
w0

2

a2 
m−�1/2�


j2p�kw0�w0dw0P2p�cos �� . �70�

With the help of the following identity:18

�
0

a 	1 −
w0

2

a2 
m−�1/2�

j2p�kw0�w0dw0 =
��

k2�m + �1/2��p+1



p!


�2p + �3/2��	 ka

2

2p+2


1F2	p + 1;p + m +
3

2
,2p +

3

2
;−

k2a2

4

 , �71�

the solution is given by

p�r,�� = − p̃0�
m=0

M

�m�
p=0

P
�− 1�p
�p + �1/2��h2p

�2��kr�P2p�cos ��

�2p + �1/2���m + �3/2��p


	 ka

2

2p+2

1F2	p + 1;p + m +
3

2
,2p +

3

2
;−

k2a2

4

 .

�72�

This expansion converges providing r�a. Let an error func-

tion be defined by

J. Acoust. Soc. Am., Vol. 120, No. 1, July 2006
�P�r,�� =
�p2P�r,�� − pP�r,���

�pP�r,���
, �73�

so that the pressure obtained with an expansion limit 2P is
used as a reference. The calculations were performed using
30-digit precision with P�2ka and M = P. This produced
values of � typically on the order of 10−8 except at r=a
where it was on the order of 0.01. At r=a and �=� /2 �i.e.,
the disk rim�, there is a singularity which was avoided by
the use of a small offset. For ka�1, values M = P=2 were
used.

K. Near-field pressure when the distance from the
center of the disk to the observation point is
less than the diaphragm’s radius

1. The near-field pressure as an integral expression

The simplest way to derive an expression for the imme-
diate near-field pressure is to use the King integral. Applying

the expression for Ãm in Eq. �47� to Eq. �8�, the near-field
pressure can be written

p̃�w,z� = p̃0�
m=0

�

�m
	m +
3

2

�IFin�m,w,z� − iIInf�m,w,z�� ,

�74�

where

IFin�m,w,z� =
ka

2
�

0

k 	 2

a�

m−�1/2�

Jm+�1/2��a��


 J0�w��
e−iz�k2−�2

�k2 − �2
d� �75�

and

IInf�m,w,z� =
ka

2
�

k

� 	 2

a�

m−�1/2�

Jm+�1/2��a��


 J0�w��
e−z��2−k2

��2 − k2
d� . �76�

2. Solution of the finite integral

Substituting �=k�1− t2 in Eq. �75� in order to simplify
the exponent yields

IFin�m,w,z� = 	 2

ka

m−�3/2�


�
0

1 Jm+�1/2��ka�1 − t2�J0�kw�1 − t2�

�1 − t2��m/2�+�1/4�


e−ikztd� . �77�

The Bessel functions in Eq. �77� can then be expanded using
the following Lommel expansion:20

Jn�ka�1 − t2�
�1 − t2�n/2 = �

m=0

� 	 ka

2

mt2m

m!
Jn+m�ka� , �78�
which leads to
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IFin�m,w,z� = �
p=0

�

�
q=0

� 	 ka

2

p−m+�3/2�


	 kw

2

qJp+m+�1/2��ka�Jq�kw�

p!q!


 �
0

1

e−ikztt2�p+q�d� . �79�

The integral in Eq. �79� can be solved using the identity17

�
0

1

e−ikztt2�p+q�dt =
��2p + 2q + 1,ikz�

�ikz�2�p+q�+1 , �80�

where � is the incomplete gamma function. Inserting Eq.
�80� in Eq. �79� and truncating the summation limits gives
the final solution to Eq. �75� as follows:

IFin�m,w,z� = − �
p=0

P

�
q=0

Q
1

p!q!�ikz�2�p+q�+1	 ka

2

p−m+�3/2�


	 kw

2

q


 Jp+m+�1/2��ka�Jq�kw���2p + 2q

+ 1,ikz� . �81�

This solution converges for all w�0 and z�0, and was used
for the region 0�w2+z2�a2, with a small offset at z=0. On
the axis of symmetry �w=0�, only the zeroth term of the
expansion in q remains and the solution reduces to a single
expansion,

IFin�m,0,z� = − �
p=0

P
1

p!�ikz�2p+1	 ka

2

p−m+�3/2�

Jp+m+�1/2�


�ka���2p + 1,ikz� , �82�

which converges for z�0.

3. Solution of the infinite integral

For the finite integral, it was sufficient to expand both

FIG. 8. Babinet’s principle.
Bessel functions with the Lommel expansion. In the case of
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the infinite integral, this would lead to a solution which only
converges for z�w+a. Therefore, in order to ensure conver-
gence, one of the Bessel functions is to be expanded using

17

FIG. 9. Near-field pressure of a plane wave passing through a hole in an
infinite screen for ka=0.1, 1, and 3.
Gegenbauer’s summation theorem as follows:

T. Mellow: Resilient disk in an infinite baffle



Jn�kb�t2 + 1�
�t2 + 1�n/2 = 
�n�	 2

kbt

n

�
m=0

�

�m + n�Jm+n�kbt�


Jm+n�kb�Cm
n �0� , �83�

where Cm
n is the Gegenbauer17 polynomial given by

Cm
n �0� =

cos�m�/2�
�n + m/2�
�m/2�!
�n�

, �84�

where n is a positive real nonzero integer. Inserting Eq. �84�
in Eq. �83� and noting that, due to the cosine term, all odd
terms of the Gegenbauer polynomial are zero yields

Jn�ka�t2 + 1�
�t2 + 1�n/2 = 	 2

kat

n

�
m=0

�
�− 1�m

m!
�2m + n�
�m + n�


 J2m+n�ka�J2m+n�kat� . �85�

Substituting �=k�t2+1 in Eq. �76� in order to simplify the
exponent yields

IInf�m,w,z� = 	 2

ka

m−�3/2��

0

� Jm+�1/2��ka�t2 + 1�

�t2 + 1��m/2�+�1/4�


J0�kw�t2 + 1�e−kztdt . �86�

Expanding J0�kw�t2+1� in Eq. �86� with Eq. �78� and
Jm+�1/2��ka��t2+1�� with Eq. �85� yields

IInf�m,w,z� = 	 2

ka

2m−1


�
p=0

�

�
q=0

� 	 kw

2

q �− 1�p+q�2p + m + �1/2��

p!q!



�p + m + �1/2��J2q+m+�1/2��ka�Jq�kw�


 �
0

�

J2q+m+�1/2��kat�e−kztt2q−m−�1/2�dt . �87�

The integral in Eq. �87� can be solved using the following
identity:17

�
0

�

e−kztJ2p+m+�1/2��kat�t2q−m−�1/2�dt

=

�2p + 2q + 1�

�k2z2 + k2a2�q−�m/2�+�1/4� P2q−m−�1/2�
−2p−m−�1/2�	 z

�z2 + a2
 , �88�

so that, after truncating the summation limits, the final solu-
tion is given by

IInf�m,w,z� = 	 2

ka

2m−1

�
p=0

P

�
q=0

Q
�− 1�p+q�2p + m + 1/2�

q!�k2z2 + k2a2�q−�m/2�+�1/4�


 �p + 1�m−�1/2�
�2p + 2q + 1�	 kw

2

q


 J2p+m+�1/2��ka�Jq�kw�P2q−m−�1/2�
−2p−m−�1/2�


	 z
�z2 + a2
 . �89�

2 2 2
This “paraxial” expression converges for w �a +z and
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was used for the region 0�w2+z2�a2, with a small offset at
z=0. At w→a and z→0 �i.e., the disk rim�, there is a sin-
gularity. On the axis of symmetry �w=0�, only the zeroth
term of the expansion in q remains and the solution reduces
to a single expansion,

IInf�m,0,z� = 	 2

ka

2m−1

�
p=0

P
�− 1�p�2p + m + 1/2�

�k2z2 + k2a2�−�m/2�+�1/4�


�p + 1�m−�1/2�
�2p + 1� 
 J2p+m+�1/2�


�ka�P−m−�1/2�
−2p−m−�1/2�	 z

�z2 + a2
 , �90�

which converges for z�0. The calculations for Eqs. �74�,
�81�, and �89� were performed using 30-digit precision with
P�2ka, Q�4kw, and M = P. This produced values of �
typically of the order of 10−8. For ka�1, values M = P=2

FIG. 10. Near-field pressure of a plane wave passing through a hole in an
infinite screen for ka=5 and 10.
and Q=4 were used.
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III. BABINET’S PRINCIPLE

Babinet’s principle,21 as developed by Bouwkamp,22

states that the diffraction pattern resulting from the transmis-
sion of a plane wave through a hole in an infinite rigid screen
�i.e., with infinite surface impedance� is equivalent to that
produced by the scattering of the same incident wave by the
complementary resilient disk. Furthermore, the scattered
wave is identical to that produced if the disk itself were
radiating in an infinite baffle, providing the surface pressure
of the disk is equal to the pressure of the incident wave at the
surface of the disk or hole in the absence of any obstacle.
This is illustrated in Fig. 8. For clarity, the diagram portrays
the scattering of a sound wave at some very high frequency
where there is minimal diffraction. However, the principle
applies at all frequencies. The resulting sound field is given
by

p̃�r� = p̃Inc�r� + p̃Scat�r� , �91�

where p̃Inc�r� is the incident sound field in the absence of a

hole or disk given in terms of the velocity potential �̃ by

pInc�z� = �− ik�c�̃�eikz + e−ikz� , bright side of screen

0, dark side of screen

− ik�c�̃eikz, without disk �or screen�
�

�92�

using Eq. �74� for p̃Scat�w ,z� �immediate near field�, or Eq.
�72� for p̃Scat�r ,�� �intermediate near field�, or Eqs. �55�
and �57� for p̃Scat�r ,�� �far field�. Also, it can be stated that

the volume velocity Ũ at the disk due to an incident wave
is given by

Ũ = yarp̃Inc. �93�

The radiation admittance yar is given by Eqs. �50�–�52�.
The results are shown in Figs. 9–11 for various values of
ka. The pressure is plotted against the axisymmetric cy-
lindrical ordinates w and z using

r = �w2 + z2, �94�

� = arctan w/z , �95�

and the parameter Pnorm is given by

Pnorm = � p̃�w,z�
�cũ0

� . �96�

IV. CONCLUSIONS

A set of solutions has been obtained for axisymmetric
sources in infinite baffles which appear to be relatively com-
pact and can be calculated fairly easily without numerical
problems. As an example, the radiation characteristics of a
resilient disk have been calculated. By applying Babinet’s
principle, this solution has also been used to calculate the
pressure field of a plane wave passing through a circular hole
in an infinite screen.

The radiation conductance �a.k.a. transmission coeffi-

cient�, velocity magnitude and phase, and far-field directivity
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function of the resilient disk in Figs. 5, 3, 4, and 7 respec-
tively, show good agreement with the calculations of
Spence23,24 and the formulas provided here are intended to
provide a simple alternative calculation method. For in-
stance, Eqs. �44�–�46� and �50�–�52� for the radiation admit-
tance appear to be relatively compact, thus eliminating the
need for complicated spheroidal wave functions.

Although these derivations can be applied to mem-
branes, plates, or shallow shells, to do so here would result in
an overly long text. However, it would be interesting to see
the cylindrical wave functions and pressure field expansions
applied to fluid-structure coupled problems such as loud-
speaker diaphragms, for example.
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