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ABSTRACT:
The purpose of this study is to model a circular planar loudspeaker placed near a spherical reflector to broaden its

directivity pattern, which would otherwise become increasingly narrow at high frequencies. Through ray tracing, it

seems intuitively feasible to thus create a virtual point source at very high frequencies, but we provide a more

rigorous analysis to determine what will happen at intermediate frequencies where the wavelength is of a similar

magnitude to the diameter of the disk or sphere. We show that a smoother off-axis response is obtained with a dipole

pressure source, which does not obstruct the scattered sound, rather than a monopole velocity source. Hence, an

electrostatic loudspeaker, for example, would be more suitable than a dynamic one. The sphere may also serve as a

spherical approximation of a human head, in which case the loudspeaker would become an open headphone that is

not sealed to the ear. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0011732
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I. INTRODUCTION

There is general agreement on the desirability for a

loudspeaker to have a relatively constant directivity pattern

over its working frequency range1–3 because this ensures

that the tonal balance of the reflected sound is as close as

possible to that of the direct sound. Due to the precedence

effect,4 if the ear recognizes a reflected sound as correlating

with the direct sound, it combines them into a single sound,

which is then identified as coming from the direction of the

original. Hence, the stereo image is reinforced, but this only

works if the off-axis sound has a similar tonal balance to

that on-axis.

This gives rise to the question of what kind of directiv-

ity pattern is most desirable to maintain over the working

frequency range. From a practical point of view, it is diffi-

cult to achieve anything other than an omnidirectional

pattern at the lowest frequencies. Dipole and cardioid pat-

terns5,6 have been employed but not without losing effi-

ciency. Also, an omnidirectional pattern has subjective

benefits at higher frequencies. Many musical instruments,

such as strings and woodwinds, disperse the sound in all

directions, albeit not as uniformly as a true monopole.

Hence, the sound bounces off the walls, floor, and ceiling

and immerses the listener in reflected sound. When this hap-

pens, the sound seems to float through the air creating a

sense of spaciousness, even if the listening room is not an

ideal performance venue.

There have been several methods for broadening the

directivity pattern of a loudspeaker. One approach is to

create a driver that imitates a pulsating sphere, such as the

designs by J€urgen Reis7 of MBL (Tokyo, Japan). Hiro

Negishi8 of Canon (Irvine, CA) designed a series of speak-

ers that had conventional drivers firing down toward conical

reflectors, and this approach has been revived by Hans van

Maanen of Temporal Coherence (Huizen, Netherlands) but

with the drivers firing upward toward the conical reflectors.

Marcus Duevel employs a similar approach with various

reflector shapes, including spheres. Peter Dicks of German

Physiks (Maintal, Germany) prefers to use a vertically oscil-

lating cone to radiate horizontally. To avoid reflectors or

complicated driver configurations, phased arrays have been

used by Peter Walker of Quad9 and in the “oscillating

sphere” concept by T.M.,10 but these require more compli-

cated electronics in the form of delay lines. In this paper, we

focus on the simple spherical reflector, as shown in Fig. 1,

as there appears to be little rigorous analysis of reflectors

generally in the literature. Previous studies of spheres have

been primarily focused on the scattering of the sound from a

point source, rather than from a speaker diaphragm, for

gaining insight into the head related transfer function

(HRTF), either in the presence of a reflecting surface11 or

not,12 or for the study of scattering in general.13

One of the reviews of this paper drew the attention of

its authors to a paper by Zhong et al.,14 which was published

shortly after this one was submitted. Although Fig. 3 here

looks very similar to Fig. 1 of Zhong et al., the intentions of

the two papers are quite different. The latter uses the sphere

to represent the human head and how it affects the sound

field produced by a parametric array loudspeaker (PAL) rep-

resented by the disk. Furthermore, it is assumed that the dis-

tance between the two is always larger than the wavelength,

whereas this paper considers cases where the distance is

greater or less than the wavelength.a)Electronic mail: leo.karkkainen@aalto.fi
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In Sec. II of this paper, we show how a virtual point

source may be created from a disk and a sphere at high fre-

quencies through simple ray tracing. After detailing the

boundary conditions in Sec. III for a more rigorous analysis,

we derive the near and far pressure fields for a resilient disk

and sphere in Sec. IV and for a rigid disk and sphere in Sec.

V. The dipole resilient disk in Sec. IV represents a disk of

zero mass and stiffness driven by a uniform pressure distri-

bution across its surface and can therefore be regarded as an

idealized model for an electrostatic or planar magnetic

transducer with a diaphragm in the form of a very light flexi-

ble membrane that is not clamped at its perimeter.

As well as plotting the far-field pressure of a loud-

speaker with a spherical reflector, we plot the pressure

between the transducer and the sphere whereby the sphere

approximates the human head, and the transducer is an open

headphone not sealed to the head. Unlike a conventional

closed headphone with a rigid diaphragm, the resilient disk

allows sound from within the ear to escape. In other words,

there is no occlusion effect, which makes it more comfort-

able to wear.

By contrast, the monopole rigid disk in Sec. V repre-

sents two rigid back-to-back pistons that move in opposite

directions to simply illustrate the fact that the flexible dipole

transducer gives a smoother off-axis response than the rigid

monopole one.

II. SIMPLE RAY-TRACING ANALYSIS

For simplicity, let us assume that the disk and sphere both

have radius a and that the center of the disk meets the surface

of the sphere, although in reality there would need to be a small

gap to allow the disk to vibrate. Such a scheme is shown in Fig.

2. Let us also assume that the wavelength is so small that we

may use ray tracing to predict how the sound emanating from

the surface of the disk at a distance w0 from its center will be

scattered. We see from Fig. 2 that the angle of incidence and

reflection from the sphere are both at an angle a from the nor-

mal, which itself is at an angle of a from the z axis or axis of

rotational symmetry. Hence, the scattered sound subtends an

angle h¼ 2a to the z axis, which is given by

h ¼ 2a ¼ 2arcsinðw=aÞ: (1)

Consequently, as the radial distance w varies from 0 to a, the

angle h varies from 0� to 180�, which in turn means that the

presence of the sphere converts the disk from a highly directive

radiator at high frequencies to an omnidirectional one.

To put this in a more formal description, we assume that

at very high frequencies, the sound from the disk travels as a

plane wave toward the sphere such that the total volume

velocity of the disk is incident upon the hemisphere facing

the disk. For simplicity, we ignore the phase differences due

to the increasing distance between disk and sphere along the

radius, which will simply lead to corresponding phase differ-

ences in the directivity pattern. Hence, each volume velocity

element of the disk is mapped onto the sphere as follows:

d ~Udisk ¼ ~u0dSdisk

¼ d ~Uincident ¼ ~u0 cos adSsphere; (2)

where the elemental areas of the disk and sphere are given,

respectively, by

dSdisk ¼ wdwd/; (3)

dSsphere ¼ a2 sin adad/: (4)

Hence, we can write the incident volume velocity as

~Udisk ¼ ~u0

ð2p

0

ða

0

wdwd/ ¼ pa2~u0

¼ ~Uincident ¼ ~u0a2

ð2p

0

ðp=2

0

cos a sin adad/: (5)

The reflected volume velocity is obtained by substituting

a¼ h/2 so that

~Ureflected ¼ ~u0

a2

2

ð2p

0

ðp

0

cos
h
2

� �
sin

h
2

� �
dhd/

¼ ~u0

a2

4

ð2p

0

ðp

0

DðhÞ sin hdhd/ ¼ ~u0pa2; (6)

where D(h) is the directivity function given by

FIG. 1. Disk and sphere in relation to three possible listening positions.

FIG. 2. Ray tracing of sound scattered from a disk by a sphere.
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DðhÞ ¼ 2

sin h
cos

h
2

� �
sin

h
2

� �
¼ 1: (7)

Hence, the pattern is that of an omnidirectional point source.

The purpose of this paper is to verify this hypothesis using

more rigorous formulation that is applicable across the whole

range of frequencies rather than just at the very highest. We

will examine two cases: In the first, we have a dipole resil-

ient disk, which is a disk of zero mass and stiffness driven by

a uniform pressure distribution across its surface. In the sec-

ond, we have a monopole disk in the form of two back-to-

back pistons that move in opposite directions. Although this

is an unlikely configuration, compared say to a piston at the

end of a tube, it simplifies the analysis somewhat. We would

expect the asymptotic low-frequency directivity patterns to

be a figure-8 for the former and omnidirectional for the latter

because the waves will simply diffract around the sphere.

Also, we postulate that at high frequencies, both will become

omnidirectional according to Fig. 2. A second purpose of

this paper is to examine what will happen at frequencies in

between, where the wavelength is of a similar magnitude to

the circumference of the sphere. One advantage of the resil-

ient disk is that it is acoustically transparent, which means

that reflected waves will pass straight through it, whereas we

would expect the rigid monopole disk to produce secondary

reflections that interfere with the first ones.

III. BOUNDARY CONDITIONS

The loudspeaker is represented by a disk of radius a, as

shown in Fig. 3. The center of the sphere of radius R lies at an

axial distance d from the center of the disk, which lies at the

origin of the axisymmetric cylindrical coordinate system (w, z),
where w is the radial coordinate and z is the axial coordinate.

According to the Huygens–Fresnel principle, let the

sound produced by each element of the disk be due to a

point source of volume velocity ~U0. The tilde denotes the

missing factor ejxt, where t is time, x¼ 2pf¼ kc¼ 2pc/k is

the angular frequency, f is the frequency, k is the

wavenumber, c¼ 345 m/s is the speed of sound, and k is the

wavelength. The incident field due to a point source is10

~pIðr; hÞ ¼

k2q0c

4p
~U0

X1
n¼0

ð2nþ 1Þjnðkr0Þhð2Þn ðkrÞ

�Pnðcos h0ÞPnðcos hÞ; r > r0

k2q0c

4p
~U0

X1
n¼0

ð2nþ 1Þhð2Þn ðkr0ÞjnðkrÞ

�Pnðcos h0ÞPnðcos hÞ; r < r0;

8>>>>>>>>><
>>>>>>>>>:

(8)

and the scattered field is

~pSðr;hÞ ¼�
k2q0c

4p
~U0

X1
n¼0

ð2nþ 1Þ j0nðkRÞ
h
0ð2Þ
n ðkRÞ

� hð2Þn ðkr0Þhð2Þn ðkrÞPnðcosh0ÞPnðcoshÞ; (9)

where

hð2Þn ðkRÞ ¼ jnðkRÞ � iynðkRÞ; (10)

j0nðkRÞ ¼ @

@r
jnðkrÞjr¼R

¼ k

2nþ 1
njn�1ðkRÞ � ðnþ 1Þjnþ1ðkRÞð Þ; (11)

h0
ð2Þ
n ðkRÞ¼ @

@r
hð2Þn ðkrÞjr¼R

¼ k

2nþ1
nh
ð2Þ
n�1ðkRÞ�ðnþ1Þhð2Þnþ1ðkRÞ

� �
; (12)

and jn and yn are the spherical Bessel functions of the first

and second kinds, respectively. Hence, the resultant pressure

may be expressed as

~pðr; hÞ ¼ ~pIðr; hÞ þ ~pSðr; hÞ
¼ ikq0c ~U0Gðr; hjr0; h0Þ; (13)

where the uppercase G denotes the bounded Green’s func-

tion given by

Gðr; hjr0; h0Þ

¼ �ik

4p

X1
n¼0

ð2nþ 1ÞPnðcos h0ÞPnðcos hÞ

�

jnðkr0Þ �
j0nðkRÞ

h
0ð2Þ
n ðkRÞ

hð2Þn ðkr0Þ
 !

hð2Þn ðkrÞ; r > r0

jnðkrÞ � j0nðkRÞ
h
0ð2Þ
n ðkRÞ

hð2Þn ðkrÞ
 !

hð2Þn ðkr0Þ; r � r0:

8>>>>><
>>>>>:

(14)

IV. RESILIENT DISK

A. Calculation of the near-field pressure
for the resilient disk

An electrostatic loudspeaker is represented by a resil-

ient disk in which we assume that the diaphragm mass andFIG. 3. Geometry of disk and sphere.
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compliance are negligible. Hence, we model it as a harmoni-

cally varying driving pressure ~p0 distributed uniformly over

the surface of the disk. The near-field pressure due to the

resilient disk, which is a dipole pressure source, is given by

the dipole Rayleigh integral10

~pðr;hÞ¼ ~p0

ð2p

0

ða

0

@

@z0

Gðr;hjr0;h0Þ
���� r0¼

ffiffiffiffiffiffiffiffiffiffi
w2

0
þd2

p
cosh0¼d=r0

w0dw0d/0;

(15)

where

@

@z0

¼ @r0

@z0

� @
@r0

þ @h0

@z0

� @
@h0

; (16)

@r0

@z0

¼ cos h0; (17)

@h0

@z0

¼ � sin h0

r0

: (18)

Then

@

@z0

Gðr; hjr0; h0Þjr>r0

¼ �ik

4p

X1
n¼0

ð2nþ 1Þhð2Þn ðkrÞPnðcos hÞ

� j0nðkr0Þ �
j0nðkRÞ

h
0ð2Þ
n ðkRÞ

h0
ð2Þ
n ðkr0Þ

 !
cos h0Pnðcos h0Þ

(

� 1

r0

jnðkr0Þ �
j0nðkRÞ

h
0ð2Þ
n ðkRÞ

hð2Þn ðkr0Þ
 !

sin h0P0nðcos h0Þ
)
;

(19)

@

@z0

Gðr; hjr0; h0Þjr�r0

¼ �ik

4p

X1
n¼0

ð2nþ 1Þ jnðkrÞ � j0nðkRÞ
h
0ð2Þ
n ðkRÞ

hð2Þn ðkrÞ
 !

Pnðcos hÞ

�
�

h0
ð2Þ
n ðkr0Þ cos h0Pnðcos h0Þ

� 1

r0

hð2Þn ðkr0Þ sin h0P0nðcos h0Þ
	
; (20)

where

P0nðcos h0Þ ¼
@

@h0

Pnðcos h0Þ

¼ nðnþ 1Þ
ð2nþ 1Þ sin h0

Pnþ1ðcos h0Þ � Pn�1ðcos h0Þð Þ:

(21)

Letting w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 � d2
p

and r0¼ at in Eq. (15) yields

~pðr;hÞ

¼ ka

2
~p0

X1
n¼0

i�nPnðcoshÞ

�
Iþn ðkaÞhð2Þn ðkrÞ; r>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þd2
p

I�n ðkaÞ jnðkrÞ� j0nðkRÞ
h
0ð2Þ
n ðkRÞ

hð2Þn ðkrÞ
 !

; r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þd2
p ;

8>><
>>:

(22)

where

Iþn ðkaÞ ¼ in�1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2=a2
p

d=a

d

a
ð2nþ 1Þ

�

� j0nðkatÞ � j0nðkRÞ
h
0ð2Þ
n ðkRÞ

h0
ð2Þ
n ðkatÞ

 !
Pn

d

at

� �

�nðnþ 1Þ jnðkatÞ � j0nðkRÞ
h
0ð2Þ
n ðkRÞ

hð2Þn ðkatÞ
 !

� Pnþ1

d

at

� �
� Pn�1

d

at

� �� �	
dt; (23)

I�n ðkaÞ ¼ in�1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2=a2
p

d=a

d

a
ð2nþ 1Þh0ð2Þn ðkatÞPn

d

at

� ��

�nðnþ 1Þhð2Þn ðkatÞ Pnþ1

d

at

� �
� Pn�1

d

at

� �� �	
dt:

(24)

These integrals are evaluated as summations in the Appendix.

B. Near-field pressure plots for the resilient disk
and comments

Figure 4 shows the on-axis pressure at different positions

in the gap between the sphere and the disk, where both have

the same diameters, and the gap is one-twentieth of the diame-

ter of the sphere. The smoothest response is on the surface of

the sphere (solid black trace), while the most irregular is on

FIG. 4. On-axis near-field pressure due to scattering of resilient disk by a

sphere at different positions in gap between them, where both have the

same diameters, and the gap is one-twentieth of the diameter of the sphere.
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the center of the disk (dashed black trace). Figure 5 shows the

pressure at the center of the disk with no gap, so that it is also

the pressure on the surface of the sphere, with different ratios

of sphere to disk diameter ranging from unity (solid black) to

3 (dashed black). Figure 6 represents the pressure on the

sphere due to a typical headphone, where the diameter of the

sphere is three times that of the disk, with different gaps rang-

ing from zero (dashed black) to one-twentieth of the sphere

diameter (solid black). We see that the fluctuation of pressure

with frequency increases as the gap is increased.

It is also apparent that because the resilient disk is a

pressure transducer, it is not reliant on being sealed to the

head like a conventional velocity (rigid) transducer to

achieve a good low-frequency response. However, the reso-

nance frequency of the flexible diaphragm must be tuned to

the lowest frequency of its working range. The pressure field

between the resilient disk and sphere is shown for ka¼ 20 in

Fig. 7 with d¼R¼ a, as shown in Fig. 1.

C. Far-field pressure of the resilient disk

In the far field we have

hð2Þn ðkrÞjr!1 ¼
inþ1

kr
e�ikr; (25)

so that Eq. (22) becomes

~pðr; hÞ ¼ ika2 ~p0

e�ikr

4r
DðhÞ; (26)

where

DðhÞ ¼ 2

ka

X1
n¼0

Iþn ðkaÞPnðcos hÞ: (27)

Directivity patterns 20 log10|ka D(h)| are plotted in Fig. 8.

At very low frequencies, sound diffracts around the sphere,

and we see a dipole (or figure-8) pattern as if the sphere

FIG. 5. On-axis pressure due to scattering of resilient disk by a sphere with

different diameter ratios and no gap between them. Pressure is on surface of

sphere and at center of disk.

FIG. 6. On-axis pressure due to scattering of resilient disk by a sphere with

different gaps between them, where the diameter of the sphere is three times

that of the disk. Pressure is on surface of sphere.

FIG. 7. Pressure field between a resilient disk and a rigid sphere for ka¼ 20

with d¼R¼ a, as shown in Fig. 1.

FIG. 8. Resultant far-field directivity patterns of a resilient disk scattered by

a rigid sphere for various values of ka with d¼R¼ a, as shown in Fig. 1.
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were not present. However, at the highest frequencies, the

pattern becomes increasingly omnidirectional, albeit with a

number of narrow nulls and an increasing but narrowing on-

axis lobe. The latter is mainly due to the direct sound from

the disk. For comparison, Fig. 9 shows the directivity pat-

terns of the resilient disk in the absence of the sphere, where

DðhÞ ¼ 2J1ðka sin hÞ
ka sin h

cos h: (28)

The sphere clearly has a dramatic effect in widening the pattern

at the higher frequencies. Figure 10 shows 20 log10|ka D(h)|

plotted against ka for h¼ 0 (dashed gray), p/4 (solid gray), p/2

(solid black), 3p/4 (solid light gray), and p (dashed black) with

d¼R¼ a. If the disk is mounted horizontally with the sphere

either above or below it, then the black curve roughly represents

the sound heard by the listener in the horizontal direction.

Above ka¼ 2, this curve is fairly flat, but, not surprisingly, it

falls off sharply at lower frequencies because this is the “dead

zone” of the dipole pattern. The other two curves rise with

increasing frequency due to the formation of lobes at each end

of the pattern. However, these lobes also decrease in width and

therefore become an ever-smaller portion of the otherwise

omnidirectional pattern. The directivity index (DI) is given by

DI ¼ 10 log10

2jDðp=2Þj2ðp

0

jDðhÞj2 sin hdh

0
B@

1
CA; (29)

where we apply the integral identity

ðp

0

PmðcoshÞPnðcoshÞsinhdh¼
0; m 6¼ n

2

2nþ1
; m¼ n

8<
: (30)

to obtainðp

0

jDðhÞj2 sin hdh ¼ 8
X1
n¼0

Iþn ðkaÞIþ�n ðkaÞ
2nþ 1

: (31)

V. RIGID DISK

A. Calculation of the near-field pressure for the rigid
disk

The near-field pressure due to the rigid disk, which is a

monopole velocity source, is given by the monopole

Rayleigh integral10

~pðr;hÞ ¼ i2kq0c~u0

ð2p

0

ða

0

Gðr; hjr0; h0Þ
���� r0¼

ffiffiffiffiffiffiffiffiffiffi
w2

0
þd2

p
cos h0¼d=r0

w0dw0d/0:

(32)

Letting w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 � d2
p

and r0¼ at in Eq. (25) yields

~pðr;hÞ

¼ k2a2q0c~u0

X1
n¼0

i�nPnðcoshÞ

�
Iþn ðkaÞhð2Þn ðkrÞ; r>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þd2
p

I�n ðkaÞ jnðkrÞ� j0nðkRÞ
h0ð2Þn ðkRÞ

hð2Þn ðkrÞ
 !

; r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þd2;

p
8>><
>>:

(33)

where

Iþn ðkaÞ ¼ inð2nþ 1Þ
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þd2=a2
p

d=a

jnðkatÞ � j0nðkRÞ
h0ð2Þn ðkRÞ

hð2Þn ðkatÞ
 !

� Pn
d

at

� �
tdt; (34)FIG. 9. Far-field directivity patterns of a resilient disk in the absence of a

sphere for various values of ka.

FIG. 10. Resultant far-field sound pressure of a resilient disk scattered by a

rigid sphere on-axis (dashed gray), 45� off-axis (solid gray), 90� off-axis

(solid black), 135� off-axis (solid light gray), and 180� off-axis (dashed

black) with d¼R¼ a, as shown in Fig. 1.
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I�n ðkaÞ ¼ inð2nþ 1Þ
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þd2=a2
p

d=a

hð2Þn ðkatÞPn
d

at

� �
tdt: (35)

Again, applying the identities of Eqs. (A12)–(A16) yields

Iþn ðkaÞ ¼ in
ffiffiffi
p
p

4

Xbn=2c

m¼0

ð�1Þmð2nþ 1ÞC n� mþ 1

2

� �

m!C
n

2
� mþ 1

2

� �
C

n

2
� mþ 1

� � d

a

� �n�2m

1� j0nðkRÞ
h0ð2Þn ðkRÞ

 !(

� ka

2

� �n

1þ d2
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4

� �
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a
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f m
n � k2d2

4

� � !
þ i

j0nðkRÞ
h0ð2Þn ðkRÞ

� �2

ka

� �nþ1

1þ d2

a2

� �m�nþð1=2Þ

gm
n �

k2ðd2 þ a2Þ
4

� �
� d

a

� �2m�2nþ1

gm
n �

k2d2

4

� � !)
; (36)

I�n ðkaÞ ¼in

ffiffiffi
p
p

4

Xbn=2c

m¼0

ð�1Þmð2nþ 1ÞC n� mþ 1

2

� �

m!C
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2
� mþ 1
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� �
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2
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� �n�2m

� ka
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� �n
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a2

� �mþ1

f m
n � k2ðd2 þ a2Þ

4

� �
� d

a

� �2ðmþ1Þ
f m
n � k2d2

4

� � !(

�i
�2

ka

� �nþ1

1þ d2

a2

� �m�nþð1=2Þ

gm
n �

k2ðd2 þ a2Þ
4

� �
� d

a

� �2m�2nþ1

gm
n �

k2d2

4

� � !)
; (37)

where

f m
n ðxÞ ¼

1F2 mþ 1; mþ 2; nþ 3

2
; x

� �

ðmþ 1ÞC nþ 3

2

� � ; (38)

gm
n ðxÞ ¼

1F2 m� nþ 1

2
; m� nþ 3

2
;
1

2
� n; x

� �

m� nþ 1

2

� �
C

1

2
� n

� � : (39)

The pressure field between the rigid disk and sphere is

shown for ka¼ 20 in Fig. 11 with d¼R¼ a, as shown in

Fig. 1.

B. Far-field pressure of the rigid disk

Again, applying the identity of Eq. (25) yields

~pðr; hÞ ¼ ika2q0c~u0

e�ikr

2r
DðhÞ; (40)

where

DðhÞ ¼ 2
X1
n¼0

Iþn ðkaÞPnðcos hÞ: (41)

Directivity patterns 20 log10|ka D(h)| are plotted in Fig. 12.

We see that, unlike the resilient disk, which transitions from

a dipole at very low frequencies to omnidirectional at higher

frequencies, the rigid disk pattern remains largely omnidi-

rectional at all frequencies. For comparison, Fig. 13 shows

FIG. 11. Pressure field between a rigid disk and a rigid sphere for ka¼ 20

with d¼R¼ a, as shown in Fig. 1.
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the directivity patterns of the rigid disk in the absence of the

sphere, where

DðhÞ ¼ 2J1ðka sin hÞ
ka sin h

: (42)

The sphere clearly has a dramatic effect in widening the pat-

tern at the higher frequencies. Figure 14 shows 20 log10|ka
D(h)| plotted against ka for h¼ 0 (dashed gray), p/4 (solid

gray), p/2 (solid black), 3p/4 (solid light gray), and p
(dashed black) with d¼R¼ a. The black curve for the 90�

off-axis sound is significantly less regular than that for the

resilient disk due to the rigid disk being a reflective surface

rather than acoustically transparent like the resilient disk.

The effects of these reflections are visible as extra ripples in

the near-field pressure plot of Fig. 11 compared to Fig. 7. As

with the resilient disk, we see the formation of lobes on-axis

and 180� off-axis that produce the rising black and gray

dashed curves, respectively. Again, the DI is given by Eq.

(29) except in this instance,ðp

0

jDðhÞj2 sin hdh ¼ 8ka
X1
n¼0

Iþn ðkaÞIþ�n ðkaÞ
2nþ 1

: (43)

DIs are shown in Table I. Apart from at the lowest fre-

quency, where the resilient disk converges to a dipole

figure-8 pattern, the resilient disk has a lower DI than the

rigid disk at all other frequencies, which verifies that its pat-

tern is closer to omnidirectional.

C. Radiation impedance

The normalized radiation impedance may be found by

integrating the near-field pressure over the surface of the

disk and dividing this by the product of the disk volume

velocity and specific acoustic impedance of free space,

ZR ¼ RR þ iXR ¼
1

q0c~u0

ð2p

0

ða

0

~pðr; hÞ
���� r¼

ffiffiffiffiffiffiffiffiffiffi
w2þd2
p

cos h¼d=r

wdwd/:

(44)

Using the same substitutions and identities as before yields

FIG. 12. Resultant far-field directivity patterns of a rigid disk scattered by a

rigid sphere for various values of ka with d¼R¼ a, as shown in Fig. 1.

FIG. 13. Far-field directivity patterns of a rigid disk in the absence of a

sphere for various values of ka.

FIG. 14. Resultant far-field sound pressure of a rigid disk with constant

velocity scattered by a rigid sphere on-axis (dashed gray), 45� off-axis

(solid gray), 90� off-axis (solid black), 135� off-axis (solid light gray), and

180� off-axis (dashed black) with d¼R¼ a, as shown in Fig. 1.

TABLE I. DIs of the resilient and rigid disks scattered by a sphere.

ka DI resilient disk (dB) DI rigid disk (dB)

1 �7.1 �1.2

3 �2.4 �4.4

10 �4.0 �4.8

30 �1.5 �1.9
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ZR ¼
ffiffiffi
p
p

4
k2a2
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i�nIn�

�
Xbn=2c

p¼0

ð�1ÞpC n� pþ 1

2

� �

p!C
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2
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� �
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2
� pþ 1

� � d

a
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 !
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2
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1þ d2

a2

� �pþ1
 8<

:
� f p

n �
k2ðd2 þ a2Þ

4

� �
� d

a

� �2ðpþ1Þ

f p
n �

k2d2

4

� �!

þ i
j0nðkRÞ

h0ð2Þn ðkRÞ
�2

ka

� �nþ1

1þ d2

a2

� �p�nþð1=2Þ
 

� gp
n �

k2ðd2 þ a2Þ
4

� �
� d

a

� �2p�2nþ1

� gp
n �

k2d2

4

� �!9=
;; (45)

which is plotted in Fig. 15 for d¼R¼ a.

VI. CONCLUSION

We have shown that the rigid sphere is an effective

form for broadening the directivity pattern of the sound pro-

duced by a planar disk through both simple ray tracing and a

more rigorous analysis. It turns out that the resilient disk,

which is acoustically transparent, produces a smoother off-

axis response than a rigid disk, which itself is a scattering

object. One could also investigate the effect of varying the

size of the sphere as well as its distance from the disk to see

if optimum configurations could be achieved for different

situations. For example, could an optimum response be real-

ized for a particular listening position? Or could a more dif-

fuse sound field be created to serve many positions with

multiple room reflections creating a live sense of ambience?

The latter tuning could be associated with the genre of

music being played. As a bonus, the resilient disk forms an

approximate model for a headphone with an electrostatic or

planar magnetic transducer.

APPENDIX

We split the integrals Iþn and I�n of Eqs. (23) and (24),

respectively, each into eight parts,

Iþn ðkaÞ ¼ in�1 1� j0nðkRÞ
h0ð2Þn ðkRÞ

 !
I1nðkaÞ � I2nðkaÞð

� I3nðkaÞ þ I4nðkaÞÞ þ in j0nðkRÞ
h0ð2Þn ðkRÞ

I5nðkaÞð

� I6nðkaÞ � I7nðkaÞ þ I8nðkaÞÞ; (A1)

I�n ðkaÞ¼ in�1 I1nðkaÞ� I2nðkaÞ� I3nðkaÞþ I4nðkaÞð Þ
�in I5nðkaÞ� I6nðkaÞ� I7nðkaÞþ I8nðkaÞð Þ; (A2)

where

I1nðkaÞ ¼ nkd

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2=a2
p

d=a

jn�1ðkatÞPn
d

at

� �
dt

¼
ffiffiffi
p
p

2

ka

2

� �n

n
ðd=aÞnþ1

C
nþ 1

2

� �
C

n

2
þ 1

� � ln 1þ a2

d2

� �
þ k2a2

2ð2nþ 1Þ
d2

a2 2F3 1; 1; 2; 2; nþ 3

2
;� k2d2

4

� �� 8>><
>>:

� 1þ d2

a2

� �
2F3 1; 1; 2; 2; nþ 3

2
;� k2ðd2 þ a2Þ

4

� ���
þ
Xn=2

m¼1

ð�1ÞmC n� mþ 1

2

� �
ðd=aÞn�2mþ1

m!C
n

2
� mþ 1

2

� �
C

n

2
� mþ 1

� �

� 1þ d2

a2

� �m

f m; nþ 1

2
;� k2ðd2 þ a2Þ

4

� �
� d2m

a2m
f m; nþ 1

2
;� k2d2

4

� � !9>>=
>>;; (A3)

FIG. 15. Real (black solid) and imaginary (gray solid) parts of the normalized

radiation impedance ZR of the rigid disk and sphere with d¼R¼ a, as shown in

Fig. 1. Also shown, for comparison, are the real (dashed black) and imaginary

(dashed gray) parts of the radiation impedance of a rigid disk in an infinite baffle.
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I2nðkaÞ ¼ ðnþ 1Þkd
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� �
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I6nðkaÞ ¼ ðnþ 1Þkd

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2=a2
p

d=a

ynþ1ðkatÞPn
d

at

� �
dt

¼
ffiffiffi
p
p

2

2

ka

� �nþ1

ðnþ 1Þ
Xn=2

m¼0

ð�1ÞmþnC n� mþ 1

2

� �
ðd=aÞn�2mþ1

m!C
n

2
� mþ 1

2

� �
C

n

2
� mþ 1

� � 1þ d2

a2

� �m�nþð1=2Þ
 

� f m� nþ 1

2
;� 1

2
� n;� k2ðd2 þ a2Þ

4

� �
� d2m�2nþ1

a2m�2nþ1
f m� nþ 1

2
;� 1

2
� n;� k2d2

4

� �!
; (A8)
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I7nðkaÞ ¼ nðnþ 1Þ
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where

f ðl; �; zÞ ¼ 1F2ðl; lþ 1; �; zÞ
lCð�Þ ; (A11)

1F2 is the hypergeometric function, and we have used the integral identities15
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together with

Pm
n ðzÞ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z�2 � 1
p
 �m Xbðn�mÞ=2c

k¼0

ð�1ÞkC n� k þ 1
2


 �
k!C

n� m

2
� k þ 1

2

� �
C

n� m

2
� k þ 1

� � zn�2k; (A14)

jnðzÞ ¼
ffiffiffi
p
p

2

X1
l¼0

ð�1Þl

l!C lþ nþ 3

2

� � z

2

� �2lþn

; (A15)

ynðzÞ ¼
ffiffiffi
p
p

2

X1
l¼0

ð�1Þlþnþ1

l!C l� nþ 1

2

� � z

2
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: (A16)

Equations (A3) and (A5) for I1n and I3n, respectively, have

singularities in the expression of Eq. (A11) for f when

m¼ 0. Therefore, we must expand the hypergeometric

functions and find the limit of the first term as m ! 0

using

CðmÞ 1þ d2

a2

� �m

� d2m

a2m

 !
m!0

¼ ln 1þ a2

d2

� �
: (A17)
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