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ABSTRACT:
The hemispheroid is presented as an apodized form for controlling the beam width of a sound source by varying its

height-to-radius ratio. Directivity patterns, on-axis responses, and radiation impedances are calculated for various

height-radius ratios of the oblate hemispheroid using spheroidal wave functions. It turns out that, for smaller angles

at least, there is a direct relationship between the internal angle of the semi-elliptic cross section and the half-cone

angle within which the far-field pressure is largely contained at high frequencies. The hemispheroid is compared

with both a spherical cap, which produces a much less regular response, and a high-frequency asymptotic approxi-

mation. The high-frequency asymptotic approximation is in the form of a flat circular radiator with a delay that

increases radially from the center to the perimeter, as used in some electrostatic loudspeakers. With the almost com-

plete absence of lobes, this appears to be an effective alternative means of apodization to a shaded array and is more

efficient because, unlike a shaded array, constant axial velocity is maintained over the whole surface. A high-

frequency approximation is also derived for a prolate hemispheroid. Since this may be formed from a planar array, a

beam steering option is added. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0006730
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I. INTRODUCTION

There are essentially two methods for broadening the

beam width (i.e., central lobe of the directivity pattern) of a

sound source at high frequencies where the wavelength is

several times smaller than the width of the source. One is to

employ a planar array of sources with different amounts of

electronic delay applied to each to obtain the desired pattern.

Amplitude “shading” is often applied to those closer to the

edge to avoid response irregularities and unwanted side

lobes in the directivity pattern.

However, a simpler method is to use a source with a curved

radiating surface, although making it rigid enough to avoid

breakup resonances in its working frequency range is a chal-

lenge. Hence, exotic materials, such as beryllium and diamond,

have been used. Here, we shall assume it to be perfectly rigid so

that we can examine the sound radiation due to the geometry of

the source in isolation from the material properties. A well-

known form is the spherical cap in an infinite baffle, as shown

in Fig. 1(a), which has radius a and height b. The center-angle

of the arc formed by the cap is 2a. Many hi-fi tweeters and

Bluetooth speakers approximate this form. A mathematical

approximation is devised by Kates,1 which assumes a planar

surface with a progressively increasing axial delay towards the

rim. This provides a good approximation when the wavelength

is much smaller than the diameter of the cap but a more rigorous

treatment by Suzuki and Tichy2 accounts for the effect of the

physical geometry when the wavelength is closer to the

diameter. Beranek and Mellow3 simplify the latter model by

applying the property of orthogonality to eliminate the need for

the least-mean-squares algorithm.

The effect of the spherical cap on the directivity pattern

is to contain the high-frequency radiation largely within the

half-cone angle a, as seen from Figs. 2(a) and 2(b) for

a¼ 30� and 15�, respectively, which are calculated from Eq.

(12.137) of Ref. 3.

We see from Fig. 1(b) that, due to the reflection in the

baffle, the cap is equivalent to two back-back caps oscillat-

ing in opposite directions in free space. There is a disconti-

nuity where they join at the perimeter (x¼ a) which

produces notches in the on-axis response that deepen with

decreasing a, as seen in Fig. 3. The on-axis response of the

hemispherical cap (a¼p/2), however, is fairly smooth

because there is continuity where the two hemispheres join.

We may think of the spherical cap as an unshaded array,

whereas the hemispherical cap is “self-shading” because its

geometry produces zero normal velocity at the rim. This, in

turn, has a smoothing effect on the far-field pressure.

An alternative to the spherical cap, which avoids this

problem, is the oblate hemispheroid in an infinite baffle, the

geometry of which is shown in Fig. 4(a). Again, it has radius

a on the radial w-axis and height b on the axial z-axis.

However, the profile is now an ellipse, instead of an arc, as

described by the equation

z ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

a2

r
; (1)
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which is rotated about the z-axis. Like the spherical cap, we

can model the hemispheroid as two back-to-back hemisphe-

roids oscillating in opposite directions along the z-axis,

which forms the axis of symmetry, as shown in Fig. 4(b).

However, unlike the spherical cap, we see that for any

height b, there is continuity where the two hemispheroids

meet.

As mentioned earlier, the challenge with spherical caps

and oblate hemispheroids is making them sufficiently rigid.

The high-frequency approximation offers an alternative

approach which may be realized by a planar source in which

the radiating surface is divided into concentric rings fed by a

suitable delay line to artificially create the desired profile.

Walker4 uses this, together with a flexible diaphragm, to

create a virtual (shaded) spherical cap, albeit a dipole pres-

sure source as opposed to the rigid monopole source shown

in Fig. 1. A similar scheme is also used to create a virtual

oscillating sphere,3 which is the dipole counterpart of the

hemisphere or oblate hemispheroid when b¼ 45�.
In Sec. II of this paper, we formulate the oblate hemi-

spheroid using axisymmetric spheroidal wave functions

which are solutions to the separable Helmholtz wave equa-

tion in oblate spheroidal coordinates. Three methods have

previously been used to normalize the angular spheroidal

functions. Flammer5 matches the value to that of a Legendre

function when the argument is zero, whereas Stratton et al.,6

do this for unity argument. However, for problems of practi-

cal importance, it is more useful to normalize them such that

FIG. 1. Geometry of the spherical cap.

FIG. 2. Directivity patterns of the far-

field pressure for the spherical cap for

a¼ 30� (a) and a¼ 15� (b).
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the orthogonal integral of a pair of spheroidal functions

matches that of a pair of Legendre functions. The latter is

the approach adopted by Meixner and Sch€afke7 and is also

used here. The other advantage of their formulation is that

separate formulas are not required for functions of odd and

even order. Furthermore, they may even be expressed with

fractional order. Hence, the Meixner and Sch€afke formula-

tion and notation is adopted throughout this derivation,

which makes it directly compatible with mathematical soft-

ware applications such as Mathematica
VR

. The latter is based

on the work of Falloon et al.8 Van Buren also provides valu-

able programming techniques based on the Flammer

formulation.9

We calculate the on-axis responses and directivity pat-

terns of the far-field pressure, as well as the radiation imped-

ance, for oblate hemispheroids of various aspect ratios b/a.

We also calculate the far-field pressure using the high-

frequency approximation for comparison. In Sec. III, we cal-

culate the directivity patterns of a prolate hemispheroid,

using the high-frequency approximation only, as a means of

controlling the directivity independently in two perpendicu-

lar planes. Since it is relatively simple and illustrative to do

so, we show directivity patterns for a few steering angles.

II. FAR-FIELD PRESSURE AND RADIATION
IMPEDANCE OF AN OBLATE HEMISPHEROID
INCLUDING HIGH-FREQUENCY APPROXIMATION

A. Boundary conditions

The symmetry of the configuration of Fig. 4(b) automat-

ically satisfies the boundary condition of zero pressure gra-

dient in the plane of the baffle

@

@z
~pðw; zÞ ¼ 0; a � w � 1: (2)

We use an oblate spheroidal coordinate system in g and n
that fits the geometry of the problem as shown in Fig. 5,

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

: (3)

The outline of the hemispheroid is an ellipse that intersects

the z-axis at

nab ¼
b

d
¼ qffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p ; 0 � q < 1; (4)

where

q ¼ b=a (5)

is the aspect ratio.

B. Near-field pressure

The pressure field due to the oblate hemispheroid is

described in axisymmetric oblate spheroidal coordinates by

~pðn; gÞ ¼ q0c~u0

XN

n¼0

AnSð4Þn ð�ic; inÞpsnð�ic; gÞ; (6)

where c¼ kd, d ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
, k¼x/c¼ 2pf/c is the wave

number, ~u0 is the velocity in the z direction, q0 is the density

FIG. 3. On-axis pressure of a spherical cap in an infinite baffle for a¼ 15�,
30�, 60�, and 90�, respectively.

FIG. 4. Geometry of the oblate

hemispheroid.
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of air, c is the speed of sound, and An are the unknown

expansion coefficients to be determined. Also, Sð4Þn and psn

are the radial and angular oblate spheroidal wave functions,7

which are defined in the Appendix. The angular and radial

spheroidal ordinates g and n are related to the radial and

axial cylindrical ordinates w and z by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 þ 1Þð1� g2Þ

q
d; (7)

z ¼ ngd: (8)

The normal component of the particle velocity at the surface

of the hemispheroid is then given by

~uðnab; gÞ ¼
1

�ikq0c

1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

n2 þ g2

s
@

@n
~pðn; gÞjn¼nab

¼ 1

�ic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

ab þ 1

n2
ab þ g2

s
~u0

�
XN

n¼0

AnS0
ð4Þ
n ð�ic; inabÞpsnð�ic; gÞ

¼ ~u0jgj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

ab þ 1

n2
ab þ g2

s
; �1 � g � 1: (9)

Note that we have included the scale factor5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 þ 1Þ=ðn2 þ g2Þ

q
=d for the component of the pressure

gradient that is normal to the hemispheroid. The absolute

value of g in the third line accounts for the fact that the axial

velocity is in the positive z direction on the front surface and

in the � z direction on the rear surface. Multiplying through

by the normalizing function psm(�ic, g) and integrating over

g gives

1

�ic

X1
n¼0

AnS0ð4Þn ð�ic; inabÞ
ð1

�1

psmð�ic; gÞpsnð�ic; gÞdg

¼
ð1

0

psmð�ic; gÞgdg�
ð0

�1

psmð�ic; gÞgdg; (10)

where we apply the orthogonal integral identity of Eq.

(A20) together with

ð1

0

psmð�ic; gÞgdg�
ð0

�1

psmð�ic; gÞgdg

¼
0; m odd

2

ð1

0

psmð�ic; gÞgdg; m even:

8><
>: (11)

Hence,

An ¼
0; n odd

�i
ð2nþ 1Þc

S
0ð4Þ
n ð�ic; inabÞ

ð1

0

psnð�ic; gÞgdg; n even;

8>><
>>:

(12)

so that, after inserting this into Eq. (6), the near-field pres-

sure becomes

~pðn; gÞ ¼ �icq0c~u0

XN

n¼0

ð4nþ 1ÞI2nð�icÞ

� S
ð4Þ
2n ð�ic; inÞ

S
0ð4Þ
2n ð�ic; inabÞ

ps2nð�ic; gÞ; (13)

where

I2nð�icÞ ¼
ð1

0

ps2nð�ic; g0Þg0dg0; (14)

ps2nð�ic;g0Þ¼ r2nð�icÞ
XR

r¼�n

ð�1Þru2n;rð�icÞP2nþ2rðg0Þ;

(15)

where the normalization factors r2n and expansion coeffi-

cients u2n,r are given by Eqs. (A21) and (A6), respectively,

and10

ð1

0

P2nþ2rðg0Þg0dg0 ¼
ð�1Þnþrþ1C nþ r � 1

2

� �
4
ffiffiffi
p
p

Cðnþ r þ 2Þ (16)

so that

I2nð�icÞ ¼ ð�1Þnþ1

4
ffiffiffi
p
p r2nð�icÞ

XR

r¼�n

C nþ r � 1

2

� �
Cðnþ r þ 2Þ u2n;rð�icÞ:

(17)

FIG. 5. Oblate spheroidal coordinate system.
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C. Far-field pressure

Far large arguments, we use the relationship of Eq.

(A16) so that

S
ð4Þ
2n ð�ic; inÞjn!1 ¼ i

e�iðcn�npÞ

cn
: (18)

Also, we let g¼ cos h, c¼ kd and n¼ r/d, and

d ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
so that the far-field pressure at a distance r

and off-axis angle h from the hemispheroid is

~pðr; hÞjr!1 ¼ ika2q0c~u0

e�ikr

2r
DðhÞ; (19)

where

DðhÞ ¼ �i
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ka

XN

n¼0

ð�1Þnð4nþ 1ÞI2nð�icÞ
S0
ð4Þ
2n ð�ic; inabÞ

� ps2nð�ic; cos hÞ: (20)

The far-field on-axis response is given by

Dð0Þ ¼ �i
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ka

XN

n¼0

ð�1Þnð4nþ 1ÞI2nð�icÞ
S
0ð4Þ
2n ð�ic; inabÞ

� ps2nð�ic; 1Þ: (21)

As q approaches unity, the expansions in the spheroidal

functions need fewer terms until we have a hemisphere, in

which case the directivity is given by3

DðhÞb¼aj¼�i
2

ka

XN

n¼0

ð�1Þnð4nþ1ÞP2nð0ÞP2nðcos hÞ
ð2n�1Þð2nþ2Þh0ð2Þ2n ðkaÞ

; (22)

where

h
0ð2Þ
2n ðkaÞ ¼ ka

2nh
ð2Þ
2n�1ðkaÞ � ð2nþ 1Þhð2Þ2nþ1ðkaÞ

4nþ 1
: (23)

The on-axis pressure 20 log10jD(0)j of the oblate hemisphe-

roid for four values of q is plotted in Fig. 6, where we set

the expansion limits to N¼ 10 þ 2c and R¼ 1.5 N.

Compared to those of the spherical cap, shown in Fig. 3,

these plots are clearly much smoother and the deep nulls,

seen for the smaller angles, are virtually absent here. We

define the angle b by

b ¼ arctanðb=aÞ ¼ arctanðqÞ: (24)

The directivity pattern 20 log10(jD(h)j/jD(0)j) is plotted

for b¼ 45� in Fig. 7(a), b¼ 30� in Fig. 8(a), and b¼ 15� in

Fig. 9(a).

D. Radiation impedance

The total radiation force on one side is given by the

integral of the normal component of the pressure over the

surface,

~F ¼ 1

2

ð2p

0

ð1

�1

jgj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

ab þ 1

n2
ab þ g2

s
~pðnab; gÞdS; (25)

where we use the area element

dS ¼ d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

ab þ 1Þðn2
ab þ g2Þ

q
dgd/: (26)

Then the impedance is given by

ZS ¼
~F
~U0

¼
~F

pa2~u0

¼ 1

~u0

ð1

�1

~pðnab; gÞjgjdg

¼ �2cq0c
X1
n¼0

ð4nþ 1ÞI2
2nð�icÞ S

ð4Þ
2n ð�ic; inabÞ

S0
ð4Þ
2n ð�ic; inabÞ

;

(27)

where we have again applied the integral identity of Eq.

(16). The normalized radiation resistance RR is given by

RS ¼ < ZSð Þ (28)

and the radiation reactance XR by

XR ¼ = ZSð Þ: (29)

The normalized radiation resistance and reactance are plot-

ted in Fig. 10 for four values of b. As q approaches unity,

the power series in the spheroidal functions need fewer

terms until we have a hemisphere, in which case the imped-

ance is given by3

Zsjb¼a ¼ �2ikaq0c
X1
n¼0

ð4nþ 1Þ P2nð0Þð Þ2h
ð2Þ
2n ðkaÞ

ð2n� 1Þ2ð2nþ 2Þ2h
0ð2Þ
2n ðkaÞ

: (30)

On the other hand, as q approached zero, more terms are

needed as the impedance converges towards that of a planar

circular piston in an infinite baffle3

ZSjb¼0 ¼ q0c 1� J1ð2kaÞ
ka

þ i
H1ð2kaÞ

ka

� �
: (31)

FIG. 6. On-axis pressure of an oblate hemispheroid in an infinite baffle for

b¼ 0�, 15�, 30�, and 45� or q¼ 0, 0.268, 0.577, and 1, respectively.

J. Acoust. Soc. Am. 150 (4), October 2021 Tim Mellow and Leo K€arkk€ainen 3051

https://doi.org/10.1121/10.0006730

https://doi.org/10.1121/10.0006730


E. Discussion

We see that for the smaller angles b¼ 15� and 30�, the

radiation is contained largely within the half-cone angle b at

higher frequencies (ka� 10), but for b¼ 45� it extends to

around 60�. From Fig. 6, we see that there is a pronounced first

dip in the on-axis response of the hemisphere (b¼ 45�) at

ka¼ 1.6, which is less pronounced for the hemispheroids. This

leads to a broadening of the directivity pattern in Fig. 7(a)

because there is less of a dip off axis. Conversely, we see a

narrowing of the pattern corresponding to the on-axis peak

at ka¼ 3.5. We see from the radiation resistance in Fig. 10

that the total radiated power shows no fluctuation in this

region. These effects are less visible in the directivity pat-

terns of Figs. 8(a) and 9(a) for the 30� and 15� hemisphe-

roids, respectively.

FIG. 7. Directivity patterns 20

log10(jD(h)j/jD(0)j) of the far-field

pressure for an oblate hemispheroid

where b¼ 45� (a) and the high-

frequency approximation (b).

FIG. 8. Directivity patterns 20

log10(jD(h)j/jD(0)j) of the far-field

pressure for an oblate hemispheroid

where b¼ 30� (a) and the high-

frequency approximation (b).
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F. High-frequency approximation

A similar approximation to that derived by Kates1 for

the spherical cap may be used for the oblate hemispheroid.

This is achieved by mapping the hemispheroid onto the

plane of the baffle and applying a time delay that compen-

sates for the time lag between any point surface of the spher-

oid and its apex. Let an area mapping factor be the ratio

between the area of an element on the spheroid dS, as given

by Eq. (26), and the corresponding area projected onto the

plane of the baffle dSjnab¼0,

dS

dSjnab¼0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

ab þ 1Þðn2
ab þ g2Þ

q
g

: (32)

Similarly, we must scale the velocity by the normal compo-

nent from the third line of Eq. (9). Multiplying these two

factors together gives

~uðnab; gÞdS

~u0dSjnab¼0

¼ n2
ab þ 1 ¼ a2

a2 � b2
; (33)

which is just a constant, independent of g. The far-field pres-

sure of a planar circular radiator in an infinite baffle with an

arbitrary radial surface velocity distribution ~uþðwÞ, where

w and z are the radial and axial ordinates, respectively, is

given by the monopole Rayleigh integral, taking into

account the double strength source3

~pðr; hÞjr!1 ¼ i2kq0c

ðp

�p

ða

0

~uþðw0Þ

� gðr; h;/jw0;/0; z0Þjz0¼0þw0dw0d/0

¼ ika2q0c~u0

e�ikr

2r
DðhÞ; (34)

where the far-field Green’s function in spherical–cylindrical

coordinates is given by3

gðr;h;/jw0;/0;z0Þjr!1¼
e�ikr

4pr
eik w0sinhcosð/�/0Þþz0coshð Þ: (35)

To approximate an oblate hemispheroid with a cross section

described by Eq. (1), using a planar radiator, we set the sur-

face velocity to have a radially varying time delay

FIG. 9. Directivity patterns 20

log10(jD(h)j/jD(0)j) of the far-field

pressure for an oblate hemispheroid

where b¼ 15� (a) and the high-

frequency approximation (b).

FIG. 10. Normalized radiation resistance and reactance of an oblate hemi-

spheroid in an infinite baffle for b¼ 0�, 7.5�, 30�, and 45� or q¼ 0, 0.132,

0.577, and 1, respectively.
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Tðw0Þ ¼
b

c
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

0

a2

r !
; 0 � w0 � a; (36)

as shown in Fig. 11, so that the surface velocity becomes

~uþðw0Þ ¼ ~u0e�ixTðw0Þ: (37)

Inserting Eqs. (35) and (37) into Eq. (34) and integrating

over /0 yields the directivity function

DðhÞ ¼ 2

a2

ða

0

e�ixTðw0ÞJ0ðkw0 sin hÞw0dw0; (38)

where we have used the integral identity10

ðp

�p
eiz cos ð/�/0Þd/0 ¼ 2pJ0ðzÞ: (39)

If we insert Eq. (36) into Eq. (38) and let w0¼ at, this sim-

plifies to

D hð Þ ¼ 2

ð1

0

e�ikb 1�
ffiffiffiffiffiffiffi
1�t2
pð ÞJ0 kat sin hð Þtdt: (40)

We may evaluate the integral over t in Eq. (40) for h¼ 0

using the integral identityð1

0

e�ikb 1�
ffiffiffiffiffiffiffi
1�t2
pð Þtdt ¼ 1

k2b2
1� e�ikb � ikbð Þ: (41)

Hence, the on-axis pressure is given by the simple closed-

form formula

Dð0Þ ¼ 2

q2k2a2
ð1� e�iqka � iqkaÞ; (42)

which is plotted in Fig. 12 using 20 log10jD(0)j for four val-

ues of q. We see that the frequency response shape is inde-

pendent of the height b. The roll-off simply moves up in

frequency as the height is reduced. The �4 dB point is given

by

kaj�4dB ¼
4

q
: (43)

This also holds for q >1, where we have the high-frequency

approximation of a prolate spheroid. Compared to the on-

axis responses of the physical hemispheroid shown in Fig. 6,

we see that the first dip of each plot, immediately above the

roll-off, is smoothed out by the high-frequency approxima-

tion. This is also true of Kates’ approximation of a spherical

cap.1 The directivity pattern 20 log10(jD(h)j/jD(0)j) is plot-

ted for b¼ 45� in Fig. 7(b), b¼ 30� in Fig. 8(b), and b¼ 15�

in Fig. 9(b).

Comparing these to the directivity patterns of the physi-

cal hemispheroid plotted in Figs. 7(a), 8(a) and 9(a), we see

that in the case of b¼ 15�, the correlation between the two

is remarkably good except that the physical hemispheroid

shows slightly greater rejection of sound radiated near 90�

off axis at higher frequencies.

III. FAR-FIELD PRESSURE OF A PROLATE
HEMISPHEROID USING A HIGH-FREQUENCY
APPROXIMATION

A. Far-field pressure

The oblate hemispheroid only allows the directivity to

be determined over all azimuthal angles / simultaneously.

A useful alternative is the hemi-ellipsoid shown in Fig. 13,

which has a height h and an elliptic outline, of major and

minor radii a and b, respectively, defined in rectangular

coordinates (x, y) by

FIG. 11. Delay path length for the oblate hemispheroid.

FIG. 12. On-axis pressure of an oblate hemispheroid in an infinite baffle for

b¼ 0�, 15�, 30�, and 45� or q¼ 0, 0.268, 0.577, and 1, respectively, using

the high-frequency approximation of Eq. (42).
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y ¼ 6b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

r
; �a � x � a: (44)

The cross section is semi-elliptic and it offers the possibil-

ity of different directivity patterns in the xz- and yz-planes.

To derive the far-field pressure of the physical hemi-

ellipsoid would be overly complicated using ellipsoidal

functions, but we may derive a high-frequency approxima-

tion assuming a planar radiator with a radially varying

delay, as we did for the oblate hemispheroid. For the plots,

however, we will simplify things further by letting h¼ b so

that we have a prolate hemispheroid with a semicircular

cross section in the yz-plane. The far-field pressure of the

planar elliptic radiator in an infinite baffle with an arbitrary

radial surface velocity distribution ~uþðx0; y0Þ is given by

the monopole Rayleigh integral,3 taking into account the

double strength source

~pðr; h;/Þjr!1 ¼ i2kq0c

ða

�a

ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

0
=a2

p

�b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

0
=a2

p ~uþðx0; y0Þ

� gðr; h;/jx0; y0; z0Þjz0¼0þdy0dz0

¼ ikabq0c~u0

e�ikr

2r
Dðh;/Þ; (45)

where the far-field Green’s function in spherical–rectangular

coordinates is obtained by substituting x¼ r sin h cos /,

y¼ r sin h sin /, and z¼ r cos h in the far-field Green’s func-

tion in rectangular coordinates3

gðr; h;/jx0; y0; z0Þjz0¼0 ¼
e�ikr

4pr
eik sin hðx0 cos /þy0 sin /Þ (46)

to give

D h;/ð Þ ¼ 1

pab�u0

ða

�a

ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

0
=a2

p

�b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

0
=a2

p

�uþ x0; y0ð Þeik sin h x0 cos /þy0 sin /ð Þdx0dy0:

(47)

In cylindrical coordinates (q, /0), we let x0¼ aq cos/0 and

y0¼ bq sin/0. This maps the integral onto a unit circle11 as

follows:

Dðh;/Þ ¼ 1

p~u0

ðp

�p

ð1

0

~uþðqÞeikq sinhða cos/ cos/0þb sin/ sin/0Þ

� qdqd/0: (48)

To emulate a hemi-ellipsoid, with an outline described by

Eq. (1), we set the surface velocity to have a radially varying

time delay

TðqÞ ¼ h

c
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
; 0 � q � 1 (49)

in a similar manner to that already shown in Fig. 11, so that

the surface velocity becomes

~uþðqÞ ¼ ~u0e�ixTðqÞ: (50)

Applying the identity10 arctanx ¼ arccos 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p� �

¼ arcsin x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p� �

so that

cos U ¼ a cos /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

p ; (51)

sin U ¼ b sin /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

p ; (52)

cos U cos /0 þ sin U sin /0 ¼ cos ðU� /0Þ; (53)

where

U ¼ arctan
b

a
tan /

� �
(54)

leads to

Dðh;/Þ ¼ 1

p

ðp

�p

ð1

0

e�ikh 1�
ffiffiffiffiffiffiffiffi
1�q2
p� �

� eikq sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þb2 sin2/
p

cos ðU�/0Þqdqd/0:

(55)

Applying the integral identity of Eq. (39) again yields

Dðh;/Þ ¼ 2

ð1

0

e�ikh 1�
ffiffiffiffiffiffiffiffi
1�q2
p� �

� J0 kq sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

q� �
qdq: (56)

If we calculate the directivity using numerical integration,

we find that we have the directivity pattern of an axisym-

metric oblate hemispheroid of height h and radius a when

/¼ 0 and radius b when /¼p/2. Not surprisingly, this con-

firms that the directivity in each plane may be controlled

independently. This may be illustrated by setting h¼ 0 in

Eq. (56) so that we have a planar elliptic piston in an infinite

baffle. Applying the integral identity

FIG. 13. Geometry of a hemi-ellipsoid in infinite baffle.
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ð1

0

J0 qzð Þqdq ¼ J1 zð Þ
z

(57)

yields the renowned directivity pattern of an elliptic pis-

ton11,12 given by

Dðh;/Þjh¼0 ¼
2J1 k sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

p� �
k sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

p : (58)

We see that this gives the same directivity pattern as that of

a circular piston3 of radius a when /¼ 0 and radius b when

/¼p/2. On axis, Eq. (56) reduces to

Dð0;/Þ ¼ 2

ð1

0

e�ikh 1�
ffiffiffiffiffiffiffiffi
1�q2
p� �

qdq

¼ 2

k2h2
1� e�ikh � ikhð Þ: (59)

If h¼ b and b¼ qa, so that we have a prolate hemispheroid,

this is identical to the on-axis directivity function of Eq.

(42) for an oblate hemispheroid.

B. Steered array

For a steered directivity pattern in the horizontal x-z
plane, we include an extra delay dependent on the steering

angle w,

Tðq;/0Þ ¼
b

c
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
� a

c
q cos /0 sin w;

0 � q � 1

0 � /0 � 2p;

(
(60)

which leads to the directivity function

Dðh;/Þ ¼ 2

ð1

0

e�ikh 1�
ffiffiffiffiffiffiffiffi
1�q2
p� �

� J0

�
kq

�
sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2/þ b2 sin2/

q

�a sin w

��
qdq: (61)

This is plotted in Fig. 14 for various steering angles w. We

see that, although the steering works without introducing

lobes, the pattern becomes somewhat asymmetrical for

larger angles.

IV. CONCLUSION

We have shown that oblate spheroids can be used to give

virtually any desired beam width without the lobes or on-axis

nulls associated with a spherical cap, especially for narrower

beam widths, where we can say, as a useful rule of thumb,

that the directivity pattern is contained largely within the half-

cone angle a for a spherical cap and b for an oblate hemisphe-

roid. Obviously, the two converge in the limit where they both

become hemispheres (a¼ 90� and b¼ 45�) with a half-cone

angle of around 60� and so this rule breaks down.

The directivity patterns of the high-frequency approxi-

mation, using a planar source with a radially increasing

delay, agree well with those of the physical spheroid except

that the amount of sound radiated 90� of axis from the pla-

nar source is greater. The on-axis response of the planar

source is given by a simple closed-form solution which

smooths out the first dip due to the geometry of the physical

spheroid.

We have also derived the far-field pressure of a hemi-

ellipsoid, again using the high-frequency approximation,

which potentially allows the directivity patterns in two per-

pendicular planes to be determined independently. We have

shown that in the case where the dome height is the same as

the smallest outline radius (so that we have a prolate hemi-

spheroid), the directivity patterns agree well with those of

the corresponding oblate hemispheroids of the same internal

angles b in each plane.

Finally, we have shown that applying a radially increas-

ing delay with an elliptic cross section is not only a viable

method for controlling the beam width, but the beam may

also be steered by applying a further delay that increases lin-

early from one edge to the opposite one.

The elliptic cross section appears to be a rather effective

alternative to a shaded array as a means of apodization and

is more efficient because, unlike a shaded array, constant

FIG. 14. Directivity patterns 20 log10(jD(h, 0)j/jD(w, 0)j) of the far-field

pressure for a steered prolate hemispheroid with ka¼ 30 and b¼ 15� or

q¼ 0.268.
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axial velocity is maintained over the whole surface. It is

“self-shading” due to its geometry.
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APPENDIX: AXISYMMETRIC OBLATE SPHEROIDAL
WAVE FUNCTIONS

The radial and angular oblate spheroidal wave functions

SðpÞn and psn are solutions to the following radial and angular

wave equations, respectively,

@

@n
ðn2þ1Þ @

@n

� �
þc2ðn2þ1Þ�knðcÞ

	 

SðpÞn ð�ic; inÞ¼0;

(A1)

@

@g
ð1�g2Þ @

@g

� �
�c2ð1�g2ÞþknðcÞ

	 

psnð�jc;gÞ¼0;

(A2)

in which, due to axial symmetry, we have set the azimuthal

constant of separation m (or l)¼ 0. The functions are

defined by

SðpÞn ð�ic; inÞ ¼ qnð�icÞ
XN

r¼�bn=2c
un;rð�icÞ

�

jnþ2rðcnÞ; p ¼ 1

ynþ2rðcnÞ; p ¼ 2

h
ð1Þ
nþ2rðcnÞ; p ¼ 3

h
ð2Þ
nþ2rðcnÞ; p ¼ 4;

8>>>>><
>>>>>:

(A3)

psnð�ic; gÞ ¼ rnð�icÞ
XN

r¼�bn=2c
ð�1Þrun;rð�icÞPnþ2rðgÞ;

(A4)

where kn are the eigenvalues, qn and rn are the radial and

angular normalizing factors, respectively, h
ð2Þ
nþ2r are spherical

Hankel functions of the second kind, Pnþ2r are Legendre

functions of the first kind, and un;r are the expansion coeffi-

cients defined by the recursion formulas

un;rðcÞ ¼ 1; r ¼ �bn=2c; (A5)

un;rðcÞ ¼ Nn;rðcÞun;r�1ðcÞ; r > �bn=2c; (A6)

where

Nn;rðcÞ ¼ Vn;pðcÞjp¼r (A7)

is a continued fraction obtained by tabulating Vn;p from

p¼R to r in steps of �1 using the formulas

Vn;pðcÞ ¼ �
Cn;NðcÞ

Bn;NðcÞ þ knðcÞ
; p ¼ R; (A8)

Vn;pðcÞ ¼ �
Cn;pðcÞ

Bn;pðcÞ þ knðcÞ þ An;pðcÞVn;pþ1ðcÞ
; p < R;

(A9)

where

An;rðcÞ ¼ �c2 ðnþ 2r þ 1Þðnþ 2r þ 2Þ
ð2nþ 4r þ 3Þð2nþ 4r þ 5Þ ; (A10)

Bn;rðcÞ¼�
c2

2
1� 1

ð2nþ4r�1Þð2nþ4rþ3Þ

� �

�ðnþ2rÞðnþ2rþ1Þ; (A11)

Cn;rðcÞ ¼ �c2 ðnþ 2r � 1Þðnþ 2rÞ
ð2nþ 4r � 3Þð2nþ 4r � 1Þ : (A12)

The eigenvalues knðcÞ are found from the matrix equation13

jM� kIj ¼ 0; (A13)

where I is the identity matrix and the elements of the tridiag-

onal matrix M are given by

Mp;qðn; cÞ ¼ dp;qþ1Cn;pðcÞ� dp;qBn;pðcÞ þ dpþ1;qAn;pðcÞ;
0 � p � b3R=2c

0 � q � b3R=2c;

(
(A14)

where dp,q is the Kronecker delta function. Hence, the

problem is reduced to one of finding the eigenvalues of

the matrix M. Then the vector e(n, c) is the list of eigen-

values of the matrix M in ascending order and, as above,

we have

knðcÞ ¼ ebn=2cðeðnÞ; cÞ; eðnÞ ¼ 1; n odd

0; n even:

	
(A15)

We have chosen unity for the starting values of the

coefficients in Eq. (A5) quite arbitrarily because the abso-

lute values of the spheroidal functions will be determined by

the normalization factors chosen. The radial normalization

factor is chosen so that for large arguments, the radial sphe-

roidal function converges to a spherical Hankel function

Sð4Þn ð�jc; jnÞjn!1 ¼ hð2Þn ðcnÞjn!1 ¼ j
e�jðcn�np=2Þ

cn
: (A16)

Hence

qnðcÞ ¼
XR

r¼�bn=2c
ð�1Þrun;rðcÞ

0
@

1
A
�1

: (A17)

For the angular functions, there are three possible normali-

zation schemes. In the scheme by Flammer,5 the angular

spheroidal function converges to a Legendre function when

the argument is zero
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Sð1Þn ð�ic; 0Þ ¼ Pnð0Þ; (A18)

whereas in the one by Stratton et al.,6 this happens when the

argument is unity,

Sð1Þn ð�ic; 0Þ ¼ Pnð1Þ: (A19)

However, the scheme we use is the one by Meixner et al.7 in

which the orthogonal integral of a pair of angular spheroidal

functions between �1 and 1 gives the same result as a pair

of Legendre functions10

ð1

�1

psmð�jc; gÞpsnð�jc; gÞdg ¼
ð1

�1

PmðgÞPnðgÞdg

¼
0; m 6¼ n

2

2nþ 1
; m ¼ n:

8<
:

(A20)

Hence

rnðcÞ ¼ ð2nþ 1Þ
XR

r¼�bn=2c

un;rðcÞ
� �2

2nþ 4r þ 1

0
@

1
A
�1=2

: (A21)
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