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On the sound fields of oblate and prolate hemispheroids
in infinite baffles for directivity control
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"Mellow Acoustics Ltd., 42 Hale Road, Farnham Surrey GU9 90QH, United Kingdom

2Aalto University, Otakaari 1B 02150, Espoo, Finland

ABSTRACT:

The hemispheroid is presented as an apodized form for controlling the beam width of a sound source by varying its
height-to-radius ratio. Directivity patterns, on-axis responses, and radiation impedances are calculated for various
height-radius ratios of the oblate hemispheroid using spheroidal wave functions. It turns out that, for smaller angles
at least, there is a direct relationship between the internal angle of the semi-elliptic cross section and the half-cone
angle within which the far-field pressure is largely contained at high frequencies. The hemispheroid is compared
with both a spherical cap, which produces a much less regular response, and a high-frequency asymptotic approxi-
mation. The high-frequency asymptotic approximation is in the form of a flat circular radiator with a delay that
increases radially from the center to the perimeter, as used in some electrostatic loudspeakers. With the almost com-
plete absence of lobes, this appears to be an effective alternative means of apodization to a shaded array and is more
efficient because, unlike a shaded array, constant axial velocity is maintained over the whole surface. A high-
frequency approximation is also derived for a prolate hemispheroid. Since this may be formed from a planar array, a
beam steering option is added. © 2021 Acoustical Society of America. https://doi.org/10.1121/10.0006730
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I. INTRODUCTION

There are essentially two methods for broadening the
beam width (i.e., central lobe of the directivity pattern) of a
sound source at high frequencies where the wavelength is
several times smaller than the width of the source. One is to
employ a planar array of sources with different amounts of
electronic delay applied to each to obtain the desired pattern.
Amplitude “shading” is often applied to those closer to the
edge to avoid response irregularities and unwanted side
lobes in the directivity pattern.

However, a simpler method is to use a source with a curved
radiating surface, although making it rigid enough to avoid
breakup resonances in its working frequency range is a chal-
lenge. Hence, exotic materials, such as beryllium and diamond,
have been used. Here, we shall assume it to be perfectly rigid so
that we can examine the sound radiation due to the geometry of
the source in isolation from the material properties. A well-
known form is the spherical cap in an infinite baffle, as shown
in Fig. 1(a), which has radius a and height b. The center-angle
of the arc formed by the cap is 2o. Many hi-fi tweeters and
Bluetooth speakers approximate this form. A mathematical
approximation is devised by Kates," which assumes a planar
surface with a progressively increasing axial delay towards the
rim. This provides a good approximation when the wavelength
is much smaller than the diameter of the cap but a more rigorous
treatment by Suzuki and Tichy® accounts for the effect of the
physical geometry when the wavelength is closer to the
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diameter. Beranek and Mellow® simplify the latter model by

applying the property of orthogonality to eliminate the need for
the least-mean-squares algorithm.

The effect of the spherical cap on the directivity pattern
is to contain the high-frequency radiation largely within the
half-cone angle «, as seen from Figs. 2(a) and 2(b) for
o =30° and 15°, respectively, which are calculated from Eq.
(12.137) of Ref. 3.

We see from Fig. 1(b) that, due to the reflection in the
baffle, the cap is equivalent to two back-back caps oscillat-
ing in opposite directions in free space. There is a disconti-
nuity where they join at the perimeter (x=a) which
produces notches in the on-axis response that deepen with
decreasing o, as seen in Fig. 3. The on-axis response of the
hemispherical cap (x=m/2), however, is fairly smooth
because there is continuity where the two hemispheres join.
We may think of the spherical cap as an unshaded array,
whereas the hemispherical cap is “self-shading” because its
geometry produces zero normal velocity at the rim. This, in
turn, has a smoothing effect on the far-field pressure.

An alternative to the spherical cap, which avoids this
problem, is the oblate hemispheroid in an infinite baffle, the
geometry of which is shown in Fig. 4(a). Again, it has radius
a on the radial w-axis and height b on the axial z-axis.
However, the profile is now an ellipse, instead of an arc, as
described by the equation

2
i=b p% (1)
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Baffle

which is rotated about the z-axis. Like the spherical cap, we
can model the hemispheroid as two back-to-back hemisphe-
roids oscillating in opposite directions along the z-axis,
which forms the axis of symmetry, as shown in Fig. 4(b).
However, unlike the spherical cap, we see that for any
height b, there is continuity where the two hemispheroids
meet.

As mentioned earlier, the challenge with spherical caps
and oblate hemispheroids is making them sufficiently rigid.
The high-frequency approximation offers an alternative
approach which may be realized by a planar source in which
the radiating surface is divided into concentric rings fed by a
suitable delay line to artificially create the desired profile.
Walker® uses this, together with a flexible diaphragm, to

90°

FIG. 1. Geometry of the spherical cap.

Plane of baffle

create a virtual (shaded) spherical cap, albeit a dipole pres-
sure source as opposed to the rigid monopole source shown
in Fig. 1. A similar scheme is also used to create a virtual
oscillating sphere,® which is the dipole counterpart of the
hemisphere or oblate hemispheroid when f§ =45°.

In Sec. II of this paper, we formulate the oblate hemi-
spheroid using axisymmetric spheroidal wave functions
which are solutions to the separable Helmholtz wave equa-
tion in oblate spheroidal coordinates. Three methods have
previously been used to normalize the angular spheroidal
functions. Flammer® matches the value to that of a Legendre
function when the argument is zero, whereas Stratton et al.,6
do this for unity argument. However, for problems of practi-
cal importance, it is more useful to normalize them such that

FIG. 2. Directivity patterns of the far-
field pressure for the spherical cap for

0dB
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«=230° (a) and = 15° (b).
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FIG. 3. On-axis pressure of a spherical cap in an infinite baffle for o =15°,
30°, 60°, and 90°, respectively.

the orthogonal integral of a pair of spheroidal functions
matches that of a pair of Legendre functions. The latter is
the approach adopted by Meixner and Schifke’ and is also
used here. The other advantage of their formulation is that
separate formulas are not required for functions of odd and
even order. Furthermore, they may even be expressed with
fractional order. Hence, the Meixner and Schafke formula-
tion and notation is adopted throughout this derivation,
which makes it directly compatible with mathematical soft-
ware applications such as Mathematica®. The latter is based
on the work of Falloon e7 al.® Van Buren also provides valu-
able programming techniques based on the Flammer
formulation.”

We calculate the on-axis responses and directivity pat-
terns of the far-field pressure, as well as the radiation imped-
ance, for oblate hemispheroids of various aspect ratios b/a.
We also calculate the far-field pressure using the high-
frequency approximation for comparison. In Sec. III, we cal-
culate the directivity patterns of a prolate hemispheroid,
using the high-frequency approximation only, as a means of
controlling the directivity independently in two perpendicu-
lar planes. Since it is relatively simple and illustrative to do
so, we show directivity patterns for a few steering angles.

w

a

Baffle
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Plane of baffle

Il. FAR-FIELD PRESSURE AND RADIATION
IMPEDANCE OF AN OBLATE HEMISPHEROID
INCLUDING HIGH-FREQUENCY APPROXIMATION

A. Boundary conditions

The symmetry of the configuration of Fig. 4(b) automat-
ically satisfies the boundary condition of zero pressure gra-
dient in the plane of the baffle

2ﬁ(w,z):O7 a<w< oo. 2)

0z

We use an oblate spheroidal coordinate system in # and &
that fits the geometry of the problem as shown in Fig. 5,
where

d=Va* - b~ 3)

The outline of the hemispheroid is an ellipse that intersects
the z-axis at

b q
iah d m? — q b) ( )
where
q=bla &)

is the aspect ratio.

B. Near-field pressure

The pressure field due to the oblate hemispheroid is
described in axisymmetric oblate spheroidal coordinates by

N
P& m) = pociio Y AnSS (—iy, i&)ps,(—=ip,n),  (6)
n=0

where y=kd, d = a\/1 — ¢*, k=w/c=2xf/c is the wave
number, i is the velocity in the z direction, p is the density

....... >z FIG. 4. Geometry of the oblate
hemispheroid.
(b)
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FIG. 5. Oblate spheroidal coordinate system.

of air, ¢ is the speed of sound, and A, are the unknown
expansion coefficients to be determined. Also, S,(14> and ps,,
are the radial and angular oblate spheroidal wave functions,’
which are defined in the Appendix. The angular and radial
spheroidal ordinates 1 and & are related to the radial and
axial cylindrical ordinates w and z by

(E+1D(1-n)d, (7)

2= énd. (8)

w =

The normal component of the particle velocity at the surface
of the hemispheroid is then given by

. 1 1 /8410 .
i(Eaps ) = —ikpocﬁ\/g ape a—ép(f,n)lg:@b
1 [& +1 .
=T\ 2 oMo
ry ot n

N
4 .. .
X g Ans/i)(_lyvléab)psn(_l%n)
n=0

2
- +1
= ol [ 3—, —-1<n<l. ©)
éib+’72
Note that we have included the scale factor’

\/(52 +1)/(&* 4 ?)/d for the component of the pressure

gradient that is normal to the hemispheroid. The absolute
value of # in the third line accounts for the fact that the axial
velocity is in the positive z direction on the front surface and
in the — z direction on the rear surface. Multiplying through
by the normalizing function ps,,(—iy, n7) and integrating over
n gives
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RS N . ,
_—WZAHS;“)(—W, iap) J D=7, m)ps, (=i, m)dn
n=0 -

1 0
= L s, (—iy, n)ndn — J 1 ps,(—iy,mndn,  (10)

where we apply the orthogonal integral identity of Eq.
(A20) together with

1 0
J ps,, (—iy, n)ndn —J lpsm(—iv,n)ndn

0
0, modd
- l 1
ZJ psm(_l%”)rld”h meven. ( )
0
Hence,
0, nodd
A, = 2 1 1
' _l,(i)n;)yj ps,(—iy,n)ndn, neven,
S" (_i'%iéab) 0
(12)

so that, after inserting this into Eq. (6), the near-field pres-
sure becomes

N
P(&n) = —iypociio Y (4n+ 1)y (—iy)
n=0

B
X S2n( l))alé)

L. pSZn(_i% ’1); (13)

S;(lf)(_l% léah)

where
1
]2,1(7l‘"/) = J() ps2n(7iﬂ/a ’70)’10d710a (14)
R "

P2, (=i7,10) = 02 (=) Y (= 1) 121 (=i7)Pouy 2 (o),
(15)

where the normalization factors ¢,, and expansion coeffi-
cients u,, , are given by Egs. (A21) and (A6), respectively,
and'®

| (—1)”+"+1F<n+r—%>
L Pauiar(no)nodng = 4yl (n+r+2) (16)
so that
1
(—1)"! R F(H—H_E)

Ly (—iy) = o0 (—17) Z muzn,r(—i?)-

4\/E r=—n
17
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C. Far-field pressure

Far large arguments, we use the relationship of Eq.
(A16) so that

i)

@, . .
Son (=i, i) |emne = I——F— 18
o (—17,18)]e 2 (18)

Also, we let n=cosf), y=kd and ¢=r/d, and
d = a\/1 — ¢?* so that the far-field pressure at a distance r
and off-axis angle 0 from the hemispheroid is

—ikr

5, 0)] oo = ika®pociio ezr D(0), (19)
where
2 1 — 4n + D), (—iy)
b = -2y CUL
=0 S W (—iy, i)
X PSy,(—iy, cos 0). (20)
The far-field on-axis response is given by
2\/1 — ¢ "(4n + Dha(—ip)
D(0) = 7y C
n=0 Szn l%l‘fah)
X psZn(_l% 1) (21)

As ¢ approaches unity, the expansions in the spheroidal
functions need fewer terms until we have a hemisphere, in
which case the directivity is given by>

EEN: (=1)"(4n+1) P2, (0)P2y(cos 0)

D(e)b:a| =—i (22)
kai=g (2n—1)(2n+2)K? (ka)
where
@ 2nhs,)(ka) — (2n+ Dy, (ka)
hyy' (ka) = ka—="= 1 Lo (23)
n-+1

The on-axis pressure 20 log;o|D(0)| of the oblate hemisphe-
roid for four values of ¢ is plotted in Fig. 6, where we set
the expansion limits to N=10 + 2y and R=15 N.
Compared to those of the spherical cap, shown in Fig. 3,
these plots are clearly much smoother and the deep nulls,
seen for the smaller angles, are virtually absent here. We
define the angle f by

f = arctan(b/a) = arctan(q). (24)

The directivity pattern 20 log;o(|D(6)|/|D(0)]) is plotted
for f=45° in Fig. 7(a), f=30° in Fig. 8(a), and f=15° in
Fig. 9(a).

D. Radiation impedance

The total radiation force on one side is given by the
integral of the normal component of the pressure over the
surface,
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FIG. 6. On-axis pressure of an oblate hemispheroid in an infinite baffle for
p=0°,15°30° and 45° or ¢ =0, 0.268, 0.577, and 1, respectively.

B 1 21 2 1
F=— Sab D d, 25
ZJO J | | 2 +n2p(€ahvn) S ( )
where we use the area element
ds = /(2 +1)(2, + n)dnd. 26)
Then the impedance is given by
F F 1!
Z === — D d
S = 5= i = Jilp(éazn n)Inldn
00 (4) e
. S n —17),1¢,
= —2yp062(4n + 1)[%11(_”}) Ma
n=0 S/Zn (_l% lgab)
27

where we have again applied the integral identity of Eq.
(16). The normalized radiation resistance Ry is given by

Rs = R(Zs) (28)
and the radiation reactance Xy by
Xr = S(Zs). (29)

The normalized radiation resistance and reactance are plot-
ted in Fig. 10 for four values of . As ¢ approaches unity,
the power series in the spheroidal functions need fewer
terms until we have a hemisphere, in which case the imped-
ance is given by’

(4n + 1)(P2,(0))*1? (ka)

Zy|p=q = —2ikapyc .
‘ ’ Z (2n — 1)*2n +2)*1? (ka)

(30)

On the other hand, as ¢ approached zero, more terms are
needed as the impedance converges towards that of a planar
circular piston in an infinite baffle?

J] (Zka) ,H] (2ka)
ZS‘b:O pOC(l — ka +1 ka . (31)
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FIG. 7. Directivity patterns 20
log1o(|D(0)|/|D(0)]) of the far-field
pressure for an oblate hemispheroid

E. Discussion

We see that for the smaller angles = 15° and 30°, the
radiation is contained largely within the half-cone angle f at
higher frequencies (ka > 10), but for f=45° it extends to
around 60°. From Fig. 6, we see that there is a pronounced first
dip in the on-axis response of the hemisphere (f =45°) at
ka = 1.6, which is less pronounced for the hemispheroids. This

where ff=45° (a) and the high-
frequency approximation (b).

leads to a broadening of the directivity pattern in Fig. 7(a)
because there is less of a dip off axis. Conversely, we see a
narrowing of the pattern corresponding to the on-axis peak
at ka =3.5. We see from the radiation resistance in Fig. 10
that the total radiated power shows no fluctuation in this
region. These effects are less visible in the directivity pat-
terns of Figs. 8(a) and 9(a) for the 30° and 15° hemisphe-
roids, respectively.

FIG. 8. Directivity  patterns 20
logo(|D(O)|/|D(0)]) of the far-field
pressure for an oblate hemispheroid

0dB 0dB
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where f=30° (a) and the high-
frequency approximation (b).
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90°

FIG. 9. Directivity  patterns 20
logo(|D(0)|/|D(0)]) of the far-field
pressure for an oblate hemispheroid

F. High-frequency approximation

A similar approximation to that derived by Kates' for
the spherical cap may be used for the oblate hemispheroid.
This is achieved by mapping the hemispheroid onto the
plane of the baffle and applying a time delay that compen-
sates for the time lag between any point surface of the spher-
oid and its apex. Let an area mapping factor be the ratio
between the area of an element on the spheroid dS, as given
by Eq. (26), and the corresponding area projected onto the
plane of the baffle dS|: ,—o.

(& + )&, + 1)
s _ \/ b b . (32)
Ep=0 n

ds

Similarly, we must scale the velocity by the normal compo-
nent from the third line of Eq. (9). Multiplying these two
factors together gives

i (Sap, m)dS a

2
:fab+1:m7 (33)

todS| ¢, —o

which is just a constant, independent of #. The far-field pres-
sure of a planar circular radiator in an infinite baffle with an
arbitrary radial surface velocity distribution . (w), where
w and z are the radial and axial ordinates, respectively, is
given by the monopole Rayleigh integral, taking into
account the double strength source?

I
- JO

X g(l”, ()a ¢|W07 ¢07 ZO)
e—ikr

20=0+ W()dW()d(bO

= ika® pyciig——D(0), (34)

J. Acoust. Soc. Am. 150 (4), October 2021

where f=15° (a) and the high-
frequency approximation (b).

where the far-field Green’s function in spherical—cylindrical
coordinates is given by’
—ikr
ik(wosinOcos (¢p—dg)+zocos0)

g(r>6a¢|w()a¢0,20)‘r—>oo:76 .

4nr (35)

To approximate an oblate hemispheroid with a cross section
described by Eq. (1), using a planar radiator, we set the sur-
face velocity to have a radially varying time delay

10
1 — =
I = e/ =~
= —ﬁr — ¢
3 IPES P —a ~%
S —
% - X/ poc ?r/ %r/ \ N
[<% Z N
£ 01 4= ’:{/ / LN
g = V- \
N — > 4
®
13
S I R/ poc
Impedance analogy
0.01 - R — —
/ — —— B=45° [[]
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Z X p=75°
B 1 L
0.001 ' I
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FIG. 10. Normalized radiation resistance and reactance of an oblate hemi-
spheroid in an infinite baffle for f=0°, 7.5°, 30°, and 45° or ¢ =0, 0.132,
0.577, and 1, respectively.
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b
T(w@:;(l— _@>7 0<wy<a, (36)

as shown in Fig. 11, so that the surface velocity becomes

—iowT (wp)

L~{+(W0) = ﬂoe . (37)

Inserting Eqgs. (35) and (37) into Eq. (34) and integrating
over ¢ yields the directivity function

2 (¢ _.
D(0) = —2J e i@Two) (kwy sin @) wodwy, (33)
asJo
where we have used the integral identity10
J £ (6=60) gh — D7 (2). (39)

If we insert Eq. (36) into Eq. (38) and let wy = at, this sim-
plifies to

1
D(0) = ZJ e_ikh(l_m)Jo(kaz‘sin 0)tdt. (40)

0

We may evaluate the integral over ¢ in Eq. (40) for 6=0
using the integral identity

1
. 2 1 ]
J e—zkb(l—\/T—T)tdt =— (1 =™ _ jkp). (41)
0

k*b?

Hence, the on-axis pressure is given by the simple closed-
form formula

Y

FIG. 11. Delay path length for the oblate hemispheroid.
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2

D(0) = —igka

l—e — igka), 42)

which is plotted in Fig. 12 using 20 log;0|D(0)| for four val-
ues of g. We see that the frequency response shape is inde-
pendent of the height b. The roll-off simply moves up in
frequency as the height is reduced. The —4 dB point is given
by

4
ka|_4qp = —. (43)
q

This also holds for ¢ >1, where we have the high-frequency
approximation of a prolate spheroid. Compared to the on-
axis responses of the physical hemispheroid shown in Fig. 6,
we see that the first dip of each plot, immediately above the
roll-off, is smoothed out by the high-frequency approxima-
tion. This is also true of Kates’ approximation of a spherical
cap.' The directivity pattern 20 logo(|D(0)|/|D(0)|) is plot-
ted for f=45° in Fig. 7(b), # =30° in Fig. 8(b), and = 15°
in Fig. 9(b).

Comparing these to the directivity patterns of the physi-
cal hemispheroid plotted in Figs. 7(a), 8(a) and 9(a), we see
that in the case of f=15°, the correlation between the two
is remarkably good except that the physical hemispheroid
shows slightly greater rejection of sound radiated near 90°
off axis at higher frequencies.

lll. FAR-FIELD PRESSURE OF A PROLATE
HEMISPHEROID USING A HIGH-FREQUENCY
APPROXIMATION

A. Far-field pressure

The oblate hemispheroid only allows the directivity to
be determined over all azimuthal angles ¢ simultaneously.
A useful alternative is the hemi-ellipsoid shown in Fig. 13,
which has a height 4 and an elliptic outline, of major and
minor radii @ and b, respectively, defined in rectangular
coordinates (x, y) by

0 —
—~ 5=0° 1
g 5 “
o = 45NN 30° % 15°
S -10 N\ \ Y
o \\ \
7] G —
S R
2 ) g
§ 20 —
S N\
B -25 N
s
5
£ -30 \
2
-35 !
0.1 1 10 100
ka

FIG. 12. On-axis pressure of an oblate hemispheroid in an infinite baffle for
p=0°,15°, 30°, and 45° or ¢ =0, 0.268, 0.577, and 1, respectively, using
the high-frequency approximation of Eq. (42).

Tim Mellow and Leo Karkkainen


https://doi.org/10.1121/10.0006730

FIG. 13. Geometry of a hemi-ellipsoid in infinite baffle.

2
y==*b 1——2, —a<x<a.
a

The cross section is semi-elliptic and it offers the possibil-
ity of different directivity patterns in the xz- and yz-planes.
To derive the far-field pressure of the physical hemi-
ellipsoid would be overly complicated using ellipsoidal
functions, but we may derive a high-frequency approxima-
tion assuming a planar radiator with a radially varying
delay, as we did for the oblate hemispheroid. For the plots,
however, we will simplify things further by letting 7 =b so
that we have a prolate hemispheroid with a semicircular
cross section in the yz-plane. The far-field pressure of the
planar elliptic radiator in an infinite baffle with an arbitrary
radial surface velocity distribution @ (xo,yo) is given by
the monopole Rayleigh integral,” taking into account the
double strength source

(44)

ﬁ+(x07)’0)

a  by/1-x}/d®
J—b./l—xg/a2

x g(r, 0, ¢lxo, yo, 20)|z=0+dyodzo
—ikr

2r

5,0, )]s = izkpocj

—a

= ikabpyciig D(0,¢), (45)
where the far-field Green’s function in spherical-rectangular
coordinates is obtained by substituting x=r sinf cos ¢,
y=rsin0 sin ¢, and z=r cos 0 in the far-field Green’s func-
tion in rectangular coordinates®
—ikr
eik sin 0(xo cos ¢p+yo sin §)

g(ra 07 ¢|X0,y0, ZO)|Zo:0 = dnr (46)
to give
1 a  by/1-x}/a?
D)= | |
nab~ug J—q Jop /1)
~l ()Co,y())eik sin 0(xo cos ¢+yg sin (p)dX()dy().
(47
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In cylindrical coordinates (p, ¢q), we let xo=ap cos¢g and
yo=bp sin¢o. This maps the integral onto a unit circle'" as
follows:

b= [ [

Ty ) Jo
x pdpddy.

(p)eikp sin0(a cos ¢ cos ¢py+b sin ¢ sin )
(48)

To emulate a hemi-ellipsoid, with an outline described by
Eq. (1), we set the surface velocity to have a radially varying
time delay

T(p)%(l—ﬂ), 0<p<I

(49)

in a similar manner to that already shown in Fig. 11, so that
the surface velocity becomes

i (p) = fige T, (50)
Applying the identity'® arctanx = arccos(l /V1+ x2)

= arcsin(x/v/1 + x2) so that

cos® = acos ¢ : (51)
Va2 cos2¢p + b2 sin’¢
sin® = bsin¢ : (52)
Va2 cos2¢p + b2 sin’¢
cos @ cos ¢ + sin @ sin ¢y = cos (P — ¢), (53)
where
b
® = arctan| —tan ¢ (54)
a
leads to
n 1
p(0.9) = 2| [ etV
TJ)_rJo

~ eikp sin 04/ a? cos? p+b? sin®p cos ((D_¢°)pdpd¢o.
(55
Applying the integral identity of Eq. (39) again yields

D(0, ¢) = 2J1 e—fkh(l, )

0

x Jo (kp sin 04/ a? cos?¢ + b? sin2¢) pdp.  (56)

If we calculate the directivity using numerical integration,
we find that we have the directivity pattern of an axisym-
metric oblate hemispheroid of height 4 and radius @ when
¢ =0 and radius b when ¢ = n/2. Not surprisingly, this con-
firms that the directivity in each plane may be controlled
independently. This may be illustrated by setting #=0 in
Eq. (56) so that we have a planar elliptic piston in an infinite
baffle. Applying the integral identity
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1
J
J Jo(pz)pdp = IZ(Z) (57)

0

yields the renowned directivity pattern of an elliptic pis-
ton'"'? given by

274 (k sin 0\/a? cos2¢ + b2 sin2¢)
ksin0\/a? cos2¢ + b2 sin’p

(58)

D(0,$)h=0 =

We see that this gives the same directivity pattern as that of
a circular piston® of radius @ when ¢ =0 and radius b when
¢ = m/2. On axis, Eq. (56) reduces to

[K0’¢)__2Jde%hOVﬁ_?)pdp

0

2 (-

_ —ikh .
= W e — lkh) .

(59)

If h=>b and b = qa, so that we have a prolate hemispheroid,
this is identical to the on-axis directivity function of Eq.
(42) for an oblate hemispheroid.

B. Steered array

For a steered directivity pattern in the horizontal x-z
plane, we include an extra delay dependent on the steering
angle ,

T(p, ¢o) :?(1 - \/1—p2) —gpcos<f>0sinx//7

0<p<1

which leads to the directivity function

(60)

D0, ¢) = 2]1 en(1-vi=7%)

0

x Jo (kp (sin 04/ a? cos¢ + b2 sin’¢

—asin W) ) pdp.

This is plotted in Fig. 14 for various steering angles 1. We
see that, although the steering works without introducing
lobes, the pattern becomes somewhat asymmetrical for
larger angles.

(61)

IV. CONCLUSION

We have shown that oblate spheroids can be used to give
virtually any desired beam width without the lobes or on-axis
nulls associated with a spherical cap, especially for narrower
beam widths, where we can say, as a useful rule of thumb,
that the directivity pattern is contained largely within the half-
cone angle o for a spherical cap and f for an oblate hemisphe-
roid. Obviously, the two converge in the limit where they both
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90°
0dB|

0dB

FIG. 14. Directivity patterns 20 log;o(|D(0, 0)|/|D(, 0)|) of the far-field
pressure for a steered prolate hemispheroid with k& =30 and ff=15° or
q=0.268.

become hemispheres (2 =90° and ff =45°) with a half-cone
angle of around 60° and so this rule breaks down.

The directivity patterns of the high-frequency approxi-
mation, using a planar source with a radially increasing
delay, agree well with those of the physical spheroid except
that the amount of sound radiated 90° of axis from the pla-
nar source is greater. The on-axis response of the planar
source is given by a simple closed-form solution which
smooths out the first dip due to the geometry of the physical
spheroid.

We have also derived the far-field pressure of a hemi-
ellipsoid, again using the high-frequency approximation,
which potentially allows the directivity patterns in two per-
pendicular planes to be determined independently. We have
shown that in the case where the dome height is the same as
the smallest outline radius (so that we have a prolate hemi-
spheroid), the directivity patterns agree well with those of
the corresponding oblate hemispheroids of the same internal
angles f in each plane.

Finally, we have shown that applying a radially increas-
ing delay with an elliptic cross section is not only a viable
method for controlling the beam width, but the beam may
also be steered by applying a further delay that increases lin-
early from one edge to the opposite one.

The elliptic cross section appears to be a rather effective
alternative to a shaded array as a means of apodization and
is more efficient because, unlike a shaded array, constant

Tim Mellow and Leo Karkkainen


https://doi.org/10.1121/10.0006730

axial velocity is maintained over the whole surface. It is
“self-shading” due to its geometry.
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APPENDIX: AXISYMMETRIC OBLATE SPHEROIDAL
WAVE FUNCTIONS

The radial and angular oblate spheroidal wave functions
S,<lp> and ps,, are solutions to the following radial and angular
wave equations, respectively,

{2 (@0 2) +7@ 1)) s (-imic) =o.

(AL)

{3 (=155 ) == poss (i =o.
(A2)

in which, due to axial symmetry, we have set the azimuthal
constant of separation m (or u)=0. The functions are
defined by

N
SO =iy, i) = p,(—iy) D uns(—iy)
r=—|n/2|

(A3)

N
ps,(=i7,m) = ou(=i7) Y (=)t (=) Poyar(n),
r=—|n/2|
(A4)

where 4, are the eigenvalues, p, and ¢, are the radial and
angular normalizing factors, respectively, hfﬁgzl, are spherical
Hankel functions of the second kind, P,., are Legendre
functions of the first kind, and u, , are the expansion coeffi-
cients defined by the recursion formulas

unr(7) =1, r=—[n/2], (AS5)

Uny () = Nuy(Dttnr—1(y), 1> —[n/2], (A6)
where

Nur(2) = Vap(D)lp=r (A7)

is a continued fraction obtained by tabulating V,, from
p =R torin steps of —1 using the formulas

J. Acoust. Soc. Am. 150 (4), October 2021

e Cal)
Vn,p(/) = Bn,N(V) +;~n(7)7 p =R, (A8)
Cup(7)
Vn = — P 7 R’
o) By () + 70(0) + Aup(0WVapsi (1) ¥ <
(A9)
where
N (nH2r D(n2r+2)
)= G s )t a1 5) (A10)
o T 1
Bur(7)=—73 (1 (2n+4r—1)(2n+4r+3))
—(n42r)(n+2r+1), (A11)
Cn‘f('))) = *Vz (n + 27’ — l)(}’l + 21’) (A12)

(2n+4r —3)2n+4r—1)°

The eigenvalues 2, (y) are found from the matrix equation'?

IM — 1| = 0, (A13)

where I is the identity matrix and the elements of the tridiag-
onal matrix M are given by

Mp,q(”a ) = 51}«,q+lcn,p(7’) - 5p,an,p("/) + 5p+1,qAn~,p("/)a
{ 0<p<|[3R/2]

(A14)
0<g<|3R/2],

where 0, , is the Kronecker delta function. Hence, the
problem is reduced to one of finding the eigenvalues of
the matrix M. Then the vector e(n, y) is the list of eigen-
values of the matrix M in ascending order and, as above,
we have

1, nodd

0, neven. (A15)

1) = epyay(e(n). 7). e(n) = {

We have chosen unity for the starting values of the
coefficients in Eq. (A5) quite arbitrarily because the abso-
lute values of the spheroidal functions will be determined by
the normalization factors chosen. The radial normalization
factor is chosen so that for large arguments, the radial sphe-
roidal function converges to a spherical Hankel function

@ . @ e~ IE=nm/2)
Sn (_J’Vajé)hHoo :hn (Vé)lf%oo =J yé (A16)
Hence
% -1
=1 >0 1 unr(v) (A17)
r=—|n/2|

For the angular functions, there are three possible normali-
zation schemes. In the scheme by Flammer,’ the angular
spheroidal function converges to a Legendre function when
the argument is zero
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SELI)(_iC>O) = Pn(O), (A18)
whereas in the one by Stratton et al .0 this happens when the
argument is unity,

S (—ic,0) = P,(1). (A19)
However, the scheme we use is the one by Meixner et al” in
which the orthogonal integral of a pair of angular spheroidal
functions between —1 and 1 gives the same result as a pair
of Legendre functions'®

1 1
J 11osm(—jv,n)psn(—jv,n)dn =J le(n)Pn(mdn

0, m#n
= 2 -
w1 M
(A20)
Hence
R ( ( )) 1/2
Upr (Y
n\y) = 2 1 - A21
on(7) (2n + )Z 2n+4r+1 ( )
r=—|n/2|
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