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An enhanced method for calculating the radiation characteristics of a tensioned circular membrane
in free space is presented using an analytical solution to the infinite integral in the free-space
Green’s function in cylindrical coordinates. This enables direct calculation of the surface pressure
series coefficients by equating the coefficients of the resulting Bessel series in a set of simultaneous
equations. Eliminating both numerical integration and least-squares minimization improves
calculation speed and accuracy. An infinite baffle is introduced to provide an indication of what the
theoretical limit of the bass performance would be using a very large enclosure. Furthermore,
analytical solutions to the pressure field integrals are presented. A force transmission coefficient is
introduced, which is the ratio of the total radiation impedance to the motional impedance. The
motional, radiation, and diaphragm impedances of the damped membrane are calculated, together
with the near- and far-field pressure responses and efficiency. A comparison is made between the
on-axis response �without damping� calculated using this method and using a finite element model.
It is demonstrated that good correlation between the two calculation methods can be achieved
provided the elements are small enough and a sufficiently large model is used at the frequency
extremes. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2354041�
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I. INTRODUCTION

Interest in electrostatic loudspeakers continues due to
their superior performance1 in terms of low distortion and
relatively flat frequency response when suitably damped. Re-
cent advances in digital amplifiers enable improvements in
efficiency due to the fact that the reactive current drawn by
the static capacitance does not produce the losses that occur
with an analogue amplifier. If the loudspeaker has no damp-
ing or other kinds of resistance, then there are virtually no
losses at all. However, damping, in the form of small holes in
the electrodes, is usually applied in order to control the vi-
brational modes of the membrane. Hence it is useful to de-
rive formulas for the motional input impedance of such a
loudspeaker, since this enables its efficiency to be calculated.

The most commonly used model for a loudspeaker is the
rigid piston, which assumes global loading over the surface.
However, this is not necessarily appropriate in the case of a
membrane where there is very strong localized coupling with
the acoustic load. Because it is so light, most of the moving
mass of the membrane is due to the surrounding fluid me-
dium. Also, because it is acoustically transparent, it would be
interesting to see how the pressure field might differ from
that of a rigid piston which forms an effectively opaque
sound source.

Additionally, the analytical solution to the pressure field
of a circular membrane provides a useful benchmark for
fluid-structure coupled simulation using the finite element
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modeling �FEM� method. The latter requires the membrane
to be simulated in a virtual anechoic chamber filled with air
elements. In this study the analytical solution is used as a
reference in order to determine how large this space needs to
be in order to match the far-field response. In theory, the
anechoic space should be at least as large as the near-field or
Fraunhofer zone, which is known to extend further from the
source at higher frequencies.2 Without a baffle, the source
becomes a dipole, so the near field extends further from the
source at low frequencies too, due to the proximity effect,
which, in microphone terminology,3 is sometimes referred to
as “bass tip-up.”

The electrostatic circular membrane loudspeaker is one
of only a few kinds of transducer which can be completely
simulated analytically �except turbulent flow effects between
the electrodes and other nonlinear effects are not considered
here�. By contrast, the electrodynamic speaker is notoriously
difficult to model rigorously, due to complicated cone geom-
etries and scattering of the rear wave by the magnet and
basket structures. Nearly 20 years after it was first published,
Streng’s method4,5 for calculating the sound radiation char-
acteristics of a circular stretched membrane in free space is
still the best available. The secret to its success is the inge-
nious use of a trial function for the surface pressure term of
the Kirchhoff-Helmholtz boundary integral, which is derived
from Bouwkamp’s solution6 to the free space wave equation
in oblate spheroidal coordinates. In fact, this is a somewhat
special function since it appears to lead to the simplest pos-
sible analytical solution, especially regarding the evaluation

of the impedances and near-field pressure. Unlike Streng,
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though, the current paper presents a Bessel series matching
that eliminates the need for numerical integration and least
mean square minimization in the solution.

Whereas the sound radiation from a membrane in free
space is calculated using the dipole part of the Kirchhoff-
Helmholtz boundary integral formula7 together with a power
series expression for the surface pressure, the sound radia-
tion from a membrane in an infinite baffle is calculated using
the monopole part of the Kirchhoff-Helmholtz boundary in-
tegral formula together with a similar power series expres-
sion, but this time for the surface velocity.

Hence, the derivation for the latter has some similarities
with that of a plane wave passing through a hole in an infi-
nite screen.6,8–10 The sound scattered from the hole can be
considered as that radiated from a resilient disc in an infinite
baffle if the �constant� driving pressure over its surface is
equivalent to that of the incident wave in the absence of any
obstacle. However, unlike the hole or resilient disc, the mem-
brane does not exhibit infinite velocity near its perimeter, due
to the fact that it is anchored at its rim. Hence, the solution to
the wave equation for the surrounding medium has to be
coupled to that of the membrane and solved simultaneously.
Suzuki and Tichy11 solved the coupled equations for a circu-
lar plate, but their formulation relied upon numerical integra-
tion. In a previous analysis of a membrane by the present
authors,12 numerical integration was avoided, but the least
mean squares algorithm was used to solve the coupled equa-
tions, which caused some numerical difficulties. In this pa-
per, the deflection trial function is expanded using a Bessel
series so that the coefficients can be calculated directly with-
out either least squares minimization or numerical integra-
tion.

The parameters chosen for the undamped FEM and ana-
lytical responses are the same as those used by Streng4 for a
250-mm-diam membrane in free space in order to allow di-
rect comparison. Otherwise, analytical characteristics are cal-
culated for a 500-mm-diam membrane with and without
damping in order to represent a typical full frequency range
commercial design.

II. MEMBRANE IN FREE SPACE

A. Boundary conditions

The equations that follow are written in axisymmetric
cylindrical coordinates, with w as the radial ordinate and z as
the axial ordinate. The electrostatic driving pressure p̃I is
used as the input in a wave equation for the membrane. The
tilde denotes a harmonically time varying quantity where the
factor ei�t is suppressed. The membrane deflection �̃�w� �in
the z direction� is then used as a parameter to couple it to the
surrounding loss-free acoustic medium. Hence the membrane
and free space wave equations must be solved simulta-
neously. The membrane, with radius a, lies in the xy plane as
shown in Fig. 1 with its center at the origin and the uniform
driving pressure p̃I is applied to its surface in the z direction.
The pressure field on one side of the xy plane is the sym-
metrical “negative” of that on the other, so that

˜ ˜
p�w,z� = − p�w,− z� . �1�
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Consequently, there is a Dirichlet boundary condition in
the plane of the membrane where these equal and opposite
fields meet, so that

p̃�w,0� = 0, w � a . �2�

On the front and rear outer surfaces of the membrane, there
is the coupling condition

�

�z
�p̃�w,z��z=0± = − ik�cũ0�w�,

= k2�c2��w�, 0 � w � a �3�

where ũ0�w� is the normal particle velocity in the z direction
at the surfaces and k is the wave number given by

k =
�

c
=

2�

�
, �4�

where � is the angular frequency of excitation, � is the den-
sity of air or any other surrounding medium, c is the speed of
sound in that medium, and � is the wavelength. Values of
1.18 kg/m3 and 345 m/s are assumed for � and c, respec-
tively. The perimeter of the membrane is fixed, which
leads to the following boundary condition:

�̃�a� = 0. �5�

Streng4,5 showed that the surface pressure distribution p̃+�w0�
for any flat axially symmetric unbaffled source �or sink�,
based upon Bouwkamp’s solution1 to the free space wave

FIG. 1. Geometry of membrane.
equation in oblate spheroidal coordinates could be written as
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p̃+�w0� = − p̃−�w0� = �
m=0

�

Ãm�1 −
w0

2

a2 �m+�1/2�

, �6�

where Ãm are the as yet unknown power series coefficients.

B. Solution to the free space wave equation

1. Rigorous solution

The expression for the pressure field is the same as that
given by Eq. �15� �evaluated at b=a� in a recent paper on the
sound field of disk in a finite circular baffle.13 The reason
why the same formula can be applied to a nonrigid source is
that it just describes the sound field due to an arbitrary pres-
sure distribution at the source given by Eq. �6�, regardless of
the deflection/velocity distribution,

p̃�w,z� = − a�
m=0

�

Ãm	�m +
3

2
�	

0

� � 2


a
�m+�1/2�

Jm+�3/2�

��
a�J0�
w�e−i�zd
 , �7�

where

� = 
�k2 − 
2, 0 � 
  k

i�
2 − k2, 
 � k
� �8�

and the power series coefficients Ãm are related to normal-
ized dimensionless coefficients �m by

Ãm = �m�m + 3/2�
p̃I

2
. �9�

Applying the boundary condition of Eq. �3� and truncat-
ing the power series limit leads to an expression for the sur-
face particle displacement �̃�w� as follows:

�̃�w� =
1

k2�c2

�

�z
�p̃�w,z��z=0±

= i
ap̃I

2k2�c2 �
m=0

�

�m	�m +
5

2
�	

0

� � 2


a
�m+�1/2�

�Jm+�3/2��
a�J0�
w��d
 . �10�

The solution13 to the infinite integral is given by

�̃�w� = i
p̃I

2k2a�c2 �
m=0

M

�mIm�w,k� , �11�

where

Im�w,k� = ImR�w,k� + iImI�w,k� , �12�

the real part of which is defined by

ImR�w,k� = ���
q=0

Q

�
r=0

R
�− 1�q+r	�m + 5/2�

�q!�2r!	�r + m + 5/2�

�
	�q + r + 1�

	�q + r + 5/2�� ka

2
�2�q+r�+3�w

a
�2q

, �13�
and the imaginary part is defined by
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ImI�w,k� = ���
q=0

Q

�
r=0

R
�− 1�q+r+m	�m + 5/2�
�q!�2r!	�r − m − 1/2�

�
	�q + r − m − 1/2�
	�q + r − m + 1� � ka

2
�2�q+r−m��w

a
�2q

.

�14�

Let

�w

a
�2q

= �
n=1

�

anJ0��nw/a� , �15�

where �n is the nth zero of J0��n� �i.e., nth solution of
J0��n�=0�. Multiplying through by the normalizing func-
tion J0��nw /a� and integrating over w while applying the
property of orthogonality leads to

an =

	
0

a

�w/a�2qJ0��kw/a�wdw

	
0

a

J0��nw/a�J0��kw/a�wdw

= 1F2�q + 1�;1,�q + 2;− �n
2/4�

�q + 1�J1
2��n�

, �16�

where the following identities14,15 have been used:

	
0

a

J0��nw/a�J0��kw/a�wdw = 
a2J1
2��n�/2, �k = �n

0, �k � �n,
� ,

�17�

	
0

a �w

a
�2q

J0��kw/a�wdw =
a2

1F2�q + 1;1,q + 2;− �k
2/4�

2�q + 1�
.

�18�

Hence

�̃�w� = i
p̃I

2k2a�c2 �
m=0

M

�m�
q=0

Q

�mBq�ka� + imSq�ka��

� �
n=1

N
1F2�q + 1;1,q + 2;− �n

2/4�
�q + 1�J1

2��n�
J0��nw/a� , �19�

where S and B are dipole cylindrical wave functions. S has
been named the Streng function13 as defined by

mSq�kb� = ���
r=0

R
�− 1�q+r+m�ka/2�2�q+r−m�

r!�q!�2�m + 5/2�r−2m−3�q + r − m − 1/2�3/2

�20�

and B has been named the Bouwkamp function13 as defined
by

mBq�kb� = ���
r=0

R
�− 1�q+r�ka/2�2�q+r�+3

r!�q!�2�m + 5/2�r�q + r + 1�3/2
. �21�
where �x�n is the Pochhammer symbol.
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2. High frequency approximation

At high frequencies, the following approximation can be
used:

Im�w,k�  a2	�m +
5

2
�	

0

� � 2

a

�m+�1/2�

Jm+�3/2�

��a
�J0�w
�kd
 , �22�

the solution16 to which is given by

Im�w,k�  ka�m +
3

2
��1 −

w2

a2 �m+�1/2�

. �23�

Let

�1 −
w2

a2 �m+�1/2�

= �
n=1

�

anJ0��nw/a� , �24�

so that multiplying through by the normalizing function
J0��kw /a� and integrating over w while applying the prop-
erty of orthogonality leads to

an =

	
0

a

�1 − �w/a�2�m+�1/2�J0��kw/a�wdw

	
0

a

J0��nw/a�J0��kw/a�wdw

= 	�m +
3

2
�� 2

�n
�m+�3/2�Jm+�3/2���n�

J1
2��n�

, �25�

where Sonine’s integral14 has been used as follows:

	
0

a �1 −
w0

2

a2 �m+�1/2�

J0��nw0/a�w0dw0

=
a2

2
	�m +

3

2
�� 2

�n
�m+�3/2�

Jm+�3/2���n� �26�

together with Eq. �17�. Hence

�̃�w� 
ip̃I

2k�c2 �
m=0

�

�m	�m +
5

2
��

n=1

� � 2

�n
�m+�3/2�

�
Jm+�3/2���n�

J1
2��n�

J0��nw/a� . �27�

C. Membrane wave equation

The loudspeaker configuration is shown in Fig. 2, with
stationary electrodes on either side of the membrane, each at
a distance d from it. The steady state wave equation for the
membrane deflection �̃�w� can be written with the inherent
membrane forces on the left and the external forces on the
right:

�T�2 − i�zs − �2�Dh��̃�w� = p̃+�w� − p̃−�w� − p̃I, �28�
where
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�2 =
�2

�w2 +
1

w

�

�w
, �29�

where p̃+�w� and p̃−�w� are the front and rear pressure distri-
butions, respectively, due to the surrounding acoustic me-
dium, T is the tension �which is evenly distributed through-
out the membrane�, �D is the density of the membrane
material, h is its thickness, S is its surface area �given by S
=�a2�, and zs is an arbitrary specific acoustic impedance
which is defined by

zS = RS + ikcMS −
CED

ikcS
�EP

d
�2

, �30�

where RS and MS are the distributed resistance and mass,
respectively, of the perforations in the electrodes on either
side of the membrane, which are usually designed to damp
its vibration modes17,18. For the purpose of this analysis, it is
assumed that the mass is negligible and that the resistance is
linear and will not vary with frequency. The remaining term
is the “negative impedance”1 that results from the increase in
electrostatic attraction toward each electrode as the mem-
brane approaches it. The capacitance CED between the elec-
trodes is given by

CED = �0S/d , �31�

where �0 is the permittivity of free space. Due to the push-
pull arrangement, it is assumed that the change in capaci-
tance on each side of the membrane, as it is displaced, will
tend to balance out. Hence the electrostatic forces will hardly
vary, providing there is enough tension. The total driving

force F̃I is related to the driving pressure p̃I and input voltage
ein by

F̃I = Sp̃I = 2CED
EP

d
ẽin, �32�

where EP is the membrane polarizing voltage and d is the
membrane to electrode spacing. Whilst applying Eq. �1� to

FIG. 2. Electrostatic loudspeaker configuration.
the rear pressure term, Eq. �28� can be written in the “Helm-
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˜

holtz” form using the modified diaphragm wave number kD�
as follows:

��2 + kD�
2��̃ =

1

T
�2p̃+�w� − p̃I� , �33�

where

kD� �k� = kD�k��1 − i
zS

kD�k���DhT
, �34�

kD�k� = �/cD = kc/cD, �35�

and

cD =� T

�Dh
, �36�

where cD is the speed of sound in the membrane.

D. Solution of the dynamic membrane wave equation

The solution to membrane wave equation, Eq. �33�, sub-
ject to the edge constraint of Eq. �5�, is essentially a two-
dimensional counterpart to the Kirchhoff-Helmholtz volume
integral as follows:

�̃�w� =
1

T
	

0

2� 	
0

a

�2p̃+�w0� − p̃I�G�w�w0�w0dw0d�0.

�37�

The Green’s function7 for the membrane can be written using
the modified wave number kD� and suppressing the axial term
in � and �0 as follows:

G�w�w0� =
1

�
�
n=1

�
J0��nw/a�J0��nw0/a�

J1
2��n���n

2 − kD�
2a2�

, 0 � w � a ,

�38�

where �n is the nth zero of J0�kD� a� such that J0�kD� a�=0
when kD� a=�n. Inserting Eqs. �6�, �9�, and �38� in Eq. �37�
and integrating over the surface of the membrane and
baffle yields

�̃�w� = −
a2

T
p̃I�

n=1

�
J0��nw/a�

J1��n���n
2 − kD�

2a2�� 2

�n
− �

m=0

�

�m	�m +
5

2
�

�� 2

�n
�m+�3/2�Jm+�3/2���n�

J1��n� � , �39�

where the following identity14 has been used:

	
0

a

J0��kw0/a�w0dw0 = a2J1��k�/�k, �40�
together with Eq. �26�.
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E. Final set of simultaneous equations for the power
series coefficients

1. Rigorous solution

Equating the right-hand sides of Eqs. �19� and �39� and
then equating the coefficients of J0��nw /a�, yields the fol-
lowing set of M +1 simultaneous equations in �m:

�
m=0

M

m�n�kD� a,ka��m = 1, n = 1,2, . . . ,M + 1, �41�

where

m�n�kD� a,ka� =
�n

2J1��n�
	�m +
5

2
�� 2

�n
�m+�3/2�

� Jm+�3/2���n� −
�n

2 − kD�
2a2

�2�ka�

��
q=0

Q

�mSq�ka� + imBq�ka��

�
1F2�q + 1;1,q + 2;− �n

2/4�
q + 1 � �42�

and

��ka� = a��2a�

T
= ka�2a�P0

T
, �43�

where the infinite series have been truncated to orders M, Q,
and R. S and B are dipole cylindrical wave functions defined
in Eqs. �20� and �21�, respectively. The dimensionless pa-
rameter � is the fluid-loading factor, where P0 is the static
pressure defined by P0=�c2 /� and � is the adiabatic index.
The calculations were performed using, in the case of the
damped membrane, 50 digit precision with M =10+ka and
Q=R=2M. In the case of the undamped membrane, 100
digit precision was used with M =10+5ka and again Q
=R=2M.

2. High frequency approximation

For large values of ka, the following high-frequency ap-
proximation can be obtained by equating the right-hand sides
of Eqs. �27� and �39� and then equating the coefficients of
J0��0nw /a� so that

m�n�kD� a,ka�  	�m +
5

2
�� 2

�n
�m+�1/2�J�m+3/2���n�

J1��n�

�
1 −
ika��n

2 − kD�
2a2�

�2�ka� � . �44�

F. Impedance and efficiency

1. Input impedance

The total volume velocity Ũ0 produced by
the membrane is equal to the integral of its velocity

˜
u0�w��=i���w�� from Eq. �10� over its surface as follows:
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Ũ0 = ikc	
0

2� 	
0

a

�̃�w�wdwd�

=
aF̃I

2k�c
�
m=0

M

�m	�m +
5

2
�	

0

� � 2

a

�m+3/2

�Jm+3/2�a
�J1�a
��k2 − 
2d
 , �45�

where the identity of Eq. �40� has again been used. Finally,
after solving the infinite integral15

Ũ0 =
F̃I

2�c
�
m=0

M

�m�1 − 2F3�m

2
+

3

4
,
m

2

+
5

4
;
3

2
,m +

3

2
,m +

5

2
;− k2a2�

− i
2F3�m

2
+

1

4
,
m

2
+

3

4
;
1

2
,m + 1,m + 2;− k2a2�

ka�m + 1/2�1/2�m + 5/2�−1/2
� .

�46�

The mechanical motional impedance zmi is simply the ratio

of the applied force F̃I to the average membrane velocity.
It can also be expressed in terms of the volume velocity

zmi =
F̃I

ũ0

=
SF̃I

Ũ0

= 2S�cZI, �47�

where the normalized motional input impedance ZI is given
by

ZI =
F̃I

2�cŨ0

. �48�

Then zE is the electrical input impedance, which is given by

zE =
zESzEM

zES + zEM
, �49�

where zES is the static electrical impedance given by

zES =
1

i�CED
=

d

i��0S
�50�

and zEM is the motional electrical impedance given by

zEM =
zmi

2�CEDEP/d�2 . �51�

The input impedance for a damped membrane is shown in
Fig. 3. Since the static impedance dominates, the motional
impedance is plotted separately in Fig. 4.

2. Radiation impedance

The total radiation force F̃R acting upon the membrane
can be found by integrating the surface pressure from Eq. �6�

over its surface as follows:
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F̃R = − 	
0

2� 	
0

a

p̃+�w0�w0dw0d�0 = −
F̃I

2 �
m=0

M

�m. �52�

Let a membrane force transmission coefficient � be defined
by

� = − 2F̃R/F̃I �53�

or simply the ratio of the total radiation impedance �on both
sides� to the motional impedance. Then from Eq. �52�

� = �
m=0

M

�m. �54�

The acoustic radiation impedance zar is then given by

zar =
F̃R

SŨ0

=
�c

S
�RR + iXR� , �55�

where RR is the normalized radiation resistance given by
RR=R��ZI� and XR is the normalized radiation reactance
given by XR=I��ZI�. This result is plotted in Fig. 5 together
with the radiation impedance of a rigid disk in free space for
comparison.

FIG. 3. Electrical input impedance of push-pull electrostatic loudspeaker in
free space where a=250 mm, h=12 
m, T=700 N/m, �D=1400 kg/m3,
EP=3000 V, d=2 mm, r=1 m and RS=100 Ns/m3.

FIG. 4. Motional part of electrical impedance in free space with the same

parameters as in Fig. 3.
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3. Efficiency

Now it is easy to calculate the efficiency which is simply
equal to 100*RR /RI and is shown in Fig. 10 along with the
far-field on-axis pressure response and peak displacement.

4. Diaphragm impedance

The mechanical diaphragm impedance zmd is the differ-
ence between the input impedance and the radiation imped-
ance on both sides where

zmd =
F̃I − 2F̃R

ũ0

=
S�F̃I − 2F̃R�

Ũ0

= 2S�c�RD + iXD� , �56�

where RD is the normalized diaphragm resistance given by
RD=R�ZI�1−��� and XD is the normalized membrane reac-
tance given by XD=I�ZI�1−���. This result is plotted in Fig.
6. The various impedances are shown on an equivalent elec-
trical circuit in Fig. 7.

G. Near-field pressure response

1. Near-field pressure as an integral expression

After truncating the summation limit, Eq. �7� can be
separated into finite and infinite integrals as follows:

FIG. 5. Normalized radiation impedance in free space with same parameters
as in Fig. 3 and radiation impedance of a rigid disk in free space.

FIG. 6. Normalized diaphragm impedance in free space with the same pa-

rameters as in Fig. 3.
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p̃�w,z� = −
p̃I

2 �
m=0

M

�m	�m +
5

2
��IFin�m,w,z�

+ IInf�m,w,z�� , �57�

where

IFin�m,w,z� = a	
0

k � 2

a

�m+�1/2�

Jm+�3/2��a
�

� J0�w
�e−iz�k2−
2
d
 �58�

and

IInf�m,w,z� = a	
k

� � 2

a

�m+�1/2�

Jm+�3/2��a
�

� J0�w
�e−z�
2−k2
d
 , �59�

2. Solution of the finite integral

Substituting 
=k�1− t2 in Eq. �58� in order to simplify
the exponent yields

IFin�m,w,z� = 2� 2

ka
�m−�1/2�

�	
0

1 Jm+�3/2��ka�1 − t2�J0�kw�1 − t2�

�1 − t2��m/2�+�3/4� e−ikzttdt .

�60�

The Bessel functions in Eq. �60� can then be expanded using
the following Lommel expansion:19

Jn�ka�1 − t2�
�1 − t2�n/2 = �

m=0

� � ka

2
�mt2m

m!
Jn+m�ka� , �61�

FIG. 7. Equivalent electrical circuit.
which leads to
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IFin�m,w,z� = 2�
p=0

�

�
q=0

� � ka

2
�p−m+�1/2�� kw

2
�q

�
Jp+m+�3/2��ka�Jq�kw�

p!q!
	

0

1

e−ikztt2�p+q�+1dt .

�62�

The integral in Eq. �62� can be solved using the identity14

	
0

1

e−ikztt2�p+q�+1dt =
��2p + 2q + 2,ikz�

�ikz�2�p+q�+2 , �63�

where � is the incomplete gamma function. Inserting Eq.
�63� in Eq. �62� and truncating the summation limits gives
the final solution to Eq. �60� as follows:

IFin�m,w,z� = 2�
p=0

P

�
q=0

Q
1

p!q!�ikz�2�p+q+1�� ka

2
�p−m+�1/2�

�� kw

2
�q

Jp+m+�3/2��ka�Jq�kw�

���2p + 2q + 2,ikz� . �64�

3. Solution of the infinite integral
a. Expansion of the Bessel functions. Substituting 


� 2
=k t +1 in Eq. �59� in order to simplify the exponent yields

�72�
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IInf�m,w,z� = 2� 2

ka
�m−�1/2�	

0

� Jm+�3/2��ka�t2 + 1�

�t2 + 1��m/2�+�3/4�

�J0�kw�t2 + 1�e−kzttdt . �65�

The Bessel functions in Eq. �65� can expanded in two pos-
sible ways. The first is the Lommel expansion19 as follows:

Jn�ka�t2 + 1�
�t2 + 1�n/2 = �

m=0

�

�− 1�m� ka

2
�mt2m

m!
Jm+n�ka� , �66�

and the second is Gegenbauer’s summation theorem14

Jn�ka�t2 + 1�
�t2 + 1�n/2 = 	�n�� 2

kat
�n

�
m=0

�

�m + n�Jm+n�kat�

�Jm+n�ka�Cm
n �0� , �67�

where Cm
n is the Gegenbauer14 polynomial given by

Cm
n �0� = � 1, m = n = 0

cos�m�/2�	�n + m/2�
�m/2�!	�n�

, m � 0 or n � 0, �
�68�

where n is a positive real integer. Inserting Eq. �68� in Eq.
�67� and noting that, due to the cosine term, all odd terms of
the Gegenbauer polynomial are zero, yields
Jn�ka�t2 + 1�
�t2 + 1�n/2 = �2�

m=0

�
�− 1�m

1 + �0m
J2m�ka�J2m�kat� , n = 0

� 2

kat
�n

�
m=0

�
�− 1�m

m!
�2m + n�	�m + n� � J2m+n�ka�J2m+n�kat� , n � 0,� �69�
where �0m is the Kronecker delta function. If both Bessel
functions were to be expanded �in a procedure similar to that
of Williams20� using the Lommel expansion of Eq. �66�, to-
gether with the following identities14

	
0

�

e−kztt2�p+q�+1dt =
	�2p + 2q + 2�

�kz�2�p+q�+2 , �70�

��2p + 2q + 2,ikz� − 	�2p + 2q + 2�

= − 	�2p + 2q + 2,ikz� , �71�

the resulting solution

IFin + IInf = 2�
p=0

P

�
q=0

Q
1

p!q!�ikz�2�p+q+1�� ka

2
�p−m+�1/2�� kw

2
�q

� Jp+m+�3/2��ka�Jq�kw�	�2p + 2q + 2,ikz�
would only converge for z2�a2+w2 and would therefore be
of limited value. On the other hand, expanding both Bessel
functions using the summation theorem leads to an integral
of the form

	
0

�

J2p+m+�3/2��kat�J2q�kwt�e−kztt−1dt , �73�

which can be solved, but the solution is in the form of an
expansion and is therefore slow to compute. Hence, the fol-
lowing solution uses the Lommel expansion for one Bessel
function and the summation theorem for the other and then
exchanges them so that convergent solutions are obtained, in
turn, for 0w2+z2�a2 and w2+z2�a2 �providing z�0�.

b. Solution when the distance from the center of the
membrane to the observation point is greater than the mem-
brane’s radius Expanding Jm+�3/2��ka�t2+1� in Eq. �65�

� 2
with Eq. �66� and J0�kw t +1�� with Eq. �69� yields
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IInf�m,w,z� = 4�
p=0

�

�
q=0

�
�− 1�p+q

p!�1 + �0q�� ka

2
�p−m+�1/2�

�Jp+m+�3/2�

��ka�J2q�kw�	
0

�

e−kztJ2q�kwt�t2p+1dt . �74�

The integral in Eq. �74� can be solved using the following
identity:14

	
0

�

e−kztJ2q�kwt�t2p+1dt =
	�2p + 2q + 2�
�k2z2 + k2w2�p+1

�P2p+1
−2q � z

�z2 + w2� , �75�

so that, after truncating the summation limits, the final solu-
tion is given by

IInf�m,w,z� = 4�
p=0

P

�
q=0

Q
�− 1�p+q	�2p + 2q + 2�

�1 + �0q�p!�k2z2 + k2w2�p+1

�� ka

2
�p−m+�1/2�

Jp+m+�3/2��ka�J2q�kw�

�P2p+1
−2q � z

�z2 + w2� . �76�

This expression converges for w2+z2�a2 and can therefore
be used in that region, providing z�0.

c. Solution when the distance from the center of the
membrane to the observation point is less than the mem-
brane’s radius Expanding Jm+�3/2��ka�t2+1� in Eq. �65�
with Eq. �69� and J0�kw�t2+1�� with Eq. �66� yields

IInf�m,w,z� = 2� 2

ka
�2m+1

�
p=0

�

�
q=0

�
�− 1�p+q	�p + m + 3/2�

p!q!

� �2p + m + 3/2�� kw

2
�q

J2p+m+�3/2��ka�

� Jq�kw�	
0

�

e−kztJ2p+m+�3/2��kat�t2q−m−�1/2�dt .

�77�

The integral in Eq. �77� can be solved using the
identity of Eq. �75� so that, after truncating the summation
limits, the final solution is given by

IInf�m,w,z� = 2� 2

ka
�2m+1

�
p=0

P

�
q=0

Q
�− 1�p+q�2p + m + 3/2�

q!�k2z2 + k2a2�q−�m/2�+�1/4�

��p + 1�m+�1/2�	�2p + 2q + 2�� kw

2
�q

� J2p+m+�3/2��ka�Jq�kw�P2q−m−�1/2�
−2p−m−�3/2�� z

�z2 + a2� .

�78�

This expression converges for w2a2+z2 and can therefore
be used in the region 0w2+z2a2, providing z�0. The
normalized near-field pressure response of the membrane is

shown in Fig. 8 for various values of ka. The calculations
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were performed using 50 digit precision with M = P=50 and
Q=100.

H. Far-field pressure response

The far-field pressure is derived using the same proce-
13

FIG. 8. Near-field pressure response in free space with the same parameters
as in Fig. 3.
dure as shown in Part K of Sec. II of a recent paper to give
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p̃�r,�� = − i
ap̃I

4r
e−ikrD��� = − i

EP

d
CED

aẽin

2rS
e−ikrD��� , �79�

where the directivity function D��� is given by

D��� = ka cos ��
m=0

M

�m	�m +
5

2
�� 2

ka sin �
�m+�3/2�

� Jm+3/2�ka sin �� , �80�

which, for �=0 �i.e., on-axis�, simplifies to

D�0� = ka�
m=0

M

�m = ka� , �81�

using � from Eq. �54�. �The on-axis response of a resilient
disk in free space is given by setting �=1.� The on-axis pres-
sure then simplifies to

p̃�r,0� = − i
ka2

4r
p̃Ie

−ikr� = − i�
EP

d
CED

ẽin

2�rc
e−ikr� . �82�

Taking into account that Ĩin i�CEDẽin, leads to

p̃��r,0��b=a  − �
EP

d
·

Ĩin

c
·

e−ikr

2�r
, �83�

which, in the case of �=1, is Walker’s equation.21 A better
approximation is given by

�  2�c/�RS + 2�c� , �84�

which leads to what could be termed the “modified Walker’s
equation.” The on-axis pressure response with damping is
shown in Fig. 9, together with the efficiency and peak dis-
placement at w=0. Figure 10 shows a comparison of the
on-axis responses with and without damping �the level is
reduced in order to accommodate the large undamped excur-
sions�, together with the high frequency approximation,
where the SPL is given by: SPL=20 log10�p̃�r ,0� / �20
�10−6��. The normalized directivity function
20 log10�D���� / �D�0�� is plotted in Fig. 11 for various val-

ues of ka.

J. Acoust. Soc. Am., Vol. 120, No. 5, November 2006 T. M
III. MEMBRANE IN AN INFINITE BAFFLE

A. Boundary conditions

The membrane shown in Fig. 1 is now mounted in an
infinite baffle in the xy plane with its center at the origin and
the uniform driving force p̃I is applied in the z direction. The
membrane deflection �̃�w� is then to be used as a parameter
to couple it to the surrounding loss-free acoustic medium.

The monopole source elements and their images to-
gether form the membrane source. Since they are coincident
in the plane of the infinite baffle, they combine to form ele-
ments of double strength. Hence our membrane may be mod-
eled as a “breathing” membrane in free space. Due to the
symmetry of the pressure fields on either side of the plane of
symmetry, we have the following Neumann boundary condi-
tion on the front and rear surfaces of the infinite baffle:

�

�z
p̃��w,z��z=0± = 0, a  w � � . �85�

Also, on the front and rear outer surfaces of the membrane,
there is the coupling condition

�

�z
p̃��w,z��z=0± = − ik�cũ0�w�,

= k2�c2��w� 0 � w � a . �86�

FIG. 9. On-axis pressure response of push-pull electro-
static loudspeaker in free space where a=250 mm, h
=12 
m, T=700 N/m, �D=1400 kg/m3, ein=2000
Vrms, EP=3000 V, d=2 mm, r=1 m, and RS=100
Ns/m3.

FIG. 10. On-axis pressure response with the same parameters as in Fig. 9,

except ein=40 Vrms, and with RS=0 �undamped�.
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In the actual physical system �as opposed to the “breath-
ing membrane” model�, the pressure field on one side of the
xy plane is the symmetrical “negative” of that on the other,
so that

p̃�w,z� = − p̃�w,− z� . �87�

Again, the perimeter of the membrane is fixed, which leads
to the boundary condition of Eq. �5�. On the surface of the
membrane, the velocity distribution ũ0�w0� is defined, ac-
cording to Bouwkamp’s solution6 to the free space wave
equation in oblate spheroidal coordinates, as

ũ0�w0� = �
m=0

�

Ãm�1 −
w0

2

a2 �m+�1/2�

, �88�

where Ãm are the as yet unknown power series coefficients.

B. Solution to the free space wave equation

Using the King integral and taking into account the

FIG. 11. Normalized far-field directivity function in free space with same
parameters as in Fig. 9.
double layer source, the pressure distribution is defined by
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p̃�w,z� = 2	
0

2� 	
0

a

g�w,z�w0,z0�

�
�

�z0
p̃��w0,z0��z0=0+w0dw0d�0, �89�

where the Green’s function14 is defined, in axisymmetric cy-
lindrical coordinates, by

g�w,z�w0,z0� =
i

4�
	

0

�

J0�
w�J0�
w0�



�
e−i��z−z0�d
 ,

�90�

where � is defined by Eq. �8�. Substituting Eqs. �86�, �88�,
and �90� in Eq. �89� and integrating over the surface of the
membrane yields

p̃�w,z� = ka�c�
m=0

�

Ãm	�m +
3

2
�	

0

� � 2

a

�m+�1/2�

� J0�w
�Jm+�3/2��a
�
e−i�z

�
d
 , �91�

where Sonine’s integral of Eq. �26� has been used �with 

=�0n /a�. Setting z=0 yields the surface pressure as follows:

p̃+�w0� = ka�c�
m=0

�

Ãm	�m +
3

2
�	

0

� � 2

a

�m+�1/2�

� J0�w0
�Jm+�3/2��a
�
1

�
d
 . �92�

C. Formulation of the coupled problem

Let the power series coefficients Ãm be related to nor-
malized dimensionless coefficients �m by

Ãm =
�m�m + 3/2�

2�c
p̃I. �93�

Substituting this together with Eq. �92� in Eq. �37� and
integrating over �0 leads to the following coupled equation:

�̃�w� =
2�

T
p̃I	

0

a ��
m=0

�

�mIm�w0,k� − 1�G�w�w0�w0dw0.

�94�

The infinite integral Im is defined by

Im�w0,k� = ka	�m +
5

2
�	

0

� � 2

a

�m+�1/2�

�J0�w0
�Jm+�3/2��a
�
1

�
d


= ImR�w0,k� + iImI�w0,k� , �95�

10
where the solution to the real part is given by
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˜

ImR�w0,k� = ���
q=0

�

�
r=0

�
�− 1�q+r	�m + 5/2�	�q + r + 1�

�q!�2r!	�r + m + 5/2�	�q + r + 3/2�

� � ka

2
�2�q+r+1��w0

a
�2q

. �96�

and the solution10 to the imaginary part is given by

ImI�w0,k�

= ���
q=0

�

�
r=0

�
�− 1�q+r+m+1	�m + 5/2�	�q + r − m − 1/2�

�q!�2r!	�r − m − 1/2�	�q + r − m�

�� ka

2
�2�q+r−m�−1�w0

a
�2q

. �97�

For large ka, an approximation16 is given by

Im�w0,k�  �m + 3/2��1 −
w0

2

a2 �m+�1/2�

. �98�

D. Bessel series expansion of the membrane
deflection

Using the power series of Eq. �88� together with Eq.
�93�, the deflection can also be expressed as

�̃�w� =
ũ0�w�

i�
=

p̃I

2ik�c2 �
m=0

�

�m�m +
3

2
��1 −

w2

a2 �m+�1/2�

,

0 � w � a . �99�

Using the Bessel series expansion from Eqs. �24� and �25�,
Eq. �99� can be written

�̃�w� =
p̃I

2ik�c2 �
m=0

�

�m	�m +
5

2
��

n=1

� � 2

�n
�m+�3/2�

�
Jm+�3/2���n�

J1
2��n�

� J0��nw/a�, 0 � w � a . �100�

E. Final set of simultaneous equations for the power
series coefficients

1. Rigorous solution

Inserting Eq. �38� in Eq. �94�, equating the right-hand
sides of Eqs. �94� and �100�, while integrating over the sur-
face of the membrane using the identities of Eqs. �18� and
�40� and then equating the coefficients of J0��nw /a� yields
the following set of M +1 simultaneous equations in �m;

�
m=0

M

m�n�kD� a,ka��m = 1, n = 1,2, . . . ,M + 1, �101�
where
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m�n�kD� a,ka� =
�n

2J1��n�
− ika	�m +
5

2
�� 2

�n
�m+�3/2�

� Jm+�3/2���n�
�n

2 − kD�
2a2

�2�ka�

+ �
q=0

Q

�m+1Pq�ka� + im+1Tq�ka��

�
1F2�q + 1;1,q + 2;− �n

2/4�
q + 1 � , �102�

where P and T are monopole cylindrical wave functions. P
has been named the Spence function10 as defined by

m+1Pq�ka� = ���
r=0

R
�− 1�q+r�ka/2�2�q+r+1�

r!�q!�2�m + 5/2�r�q + r + 1�1/2
�103�

and T has been named the Stenzel function 10 as defined by

m+1Tq�ka� = ���
r=0

R
�− 1�q+r+m+1�ka/2�2�q+r−m�−1

r!�q!�2�m + 5/2�r−2m−3�q + r − m − 1/2�1/2
,

�104�

where the infinite series have been truncated to orders M, Q,
and R. P and T are monopole cylindrical wave functions.
The dimensionless parameter � is the fluid-loading factor, as
defined by Eq. �43�, and �x�n is the Pochhammer symbol.
The calculations were performed using, in the case of the
damped membrane, 50 digit precision with M =10+ka and
Q=R=2M. In the case of the undamped membrane, 100
digit precision was used with M =10+5ka and again Q
=R=2M.

2. High frequency approximation

For large values of ka, the following high-frequency ap-
proximation can be obtained by the same method as for the
rigorous solution, except that Eq. �98� is used instead of Eq.
�97� and the identity of Eq. �18� is replaced by Eq. �26� so
that the solution is, not surprisingly, the same as that given in
Eq. �44�.

F. Impedance and efficiency

1. Input impedance

The total volume velocity Ũ0 produced by the
membrane is equal to the integral of its velocity
u0�w� �=i��̃�w�� from Eq. �99� over its surface as follows:

Ũ0 = ikc	
0

2� 	
0

a

�̃�w�wdwd� =
Sp̃I

2�c
�
m=0

�

�m, �105�

where S=�a2 is the area of the membrane. The parameters
zmi, zE, zES, and zEM are given in Eqs. �47� and �49�–�51�,
respectively. The normalized motional input impedance ZI
is given by
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ZI =
F̃I

2�cŨ0

= ��
m=0

M

�m�−1

. �106�

The input impedance for a damped membrane is shown in
Fig. 12. Since the static impedance dominates, the motional
impedance is plotted separately in Fig. 13.

2. Radiation impedance

The total radiation force F̃R acting upon the membrane
can be found by integrating the surface pressure from Eq.
�92� over its surface as

F̃R = − 	
0

2� 	
0

a

p̃+�w0�w0dw0d�0

=
F̃I

2
ka�

m=0

�

�m	�m +
5

2
�

�	
0

� � 2

a

�m+�3/2�J1�a
�Jm+�3/2��a
�

�k2 − 
2
d
 , �107�

FIG. 12. Electrical input impedance of push-pull electrostatic loudspeaker in
infinite baffle where a=250 mm, h=12 
m, T=700 N/m, �D=1400
kg/m3, EP=3000 V, d=2 mm, r=1 m, and RS=100 Ns/m3.

FIG. 13. Motional part of electrical impedance in infinite baffle with the

same parameters as in Fig. 12.
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where the identity of Eq. �40� has again been used. After
solving the infinite integral,15 the force transmission coeffi-
cient, defined in Eq. �53�, is given by

� = �
m=0

M

�m�1 − 2F3�m

2
+

3

4
,
m

2
+

5

4
;
1

2
,m +

3

2
,m +

5

2
;− k2a2�

+ ika
2F3�m

2
+

5

4
,
m

2
+

7

4
;
3

2
,m + 2,m + 3;− k2a2�

�m + 5/2�−1/2�m + 5/2�1/2
� .

�108�

The acoustic radiation impedance zar is then given by Eq.
�55�, where RR is the normalized radiation resistance
given by RR=R��ZI� and XR is the normalized radiation
reactance given by XR=I��ZI�. This result is plotted in Fig.
14 together with the radiation impedance of a rigid disk in an
infinite baffle for comparison.

3. Efficiency

Now it is easy to calculate the efficiency which is simply
equal to 100*RR /RI and is shown in Fig. 17 along with the
far-field on-axis pressure response and peak displacement.

4. Diaphragm impedance

The mechanical diaphragm impedance zmd is the differ-
ence between the input impedance and the radiation imped-
ance on both sides, as defined by Eq. �56�, where RD is the
normalized diaphragm resistance given by RD=R�ZI�1−���
and XD is the normalized membrane reactance given by XD

=I�ZI�1−���. This result is plotted in Fig. 15. The various
impedances are shown on an equivalent electrical circuit in

FIG. 14. Normalized radiation impedance in infinite baffle with the same
parameters as in Fig. 12 and radiation impedance of a rigid disk in an
infinite baffle.
Fig. 7.
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G. Near-field pressure response

1. Near-field pressure when the distance from the
center of the membrane to the observation point
is greater than the membrane’s radius

Using the same procedure as in a recent paper for a
resilient disk in an infinite baffle,10 it can be shown that

p�r,�� = − �p̃I�
m=0

M

�
p=0

P
�mh2p

�2��kr�P2p�cos ��
�m + �5/2��p	��1/2� − p�	�2p + �1/2��

�� ka

2
�2p+2

1F2�p + 1;p + m +
5

2
,2p +

3

2
;−

k2a2

4
� .

�109�

This solution converges providing r�a.

2. Near-field pressure when the distance from the
center of the membrane to the observation point
is less than the membrane’s radius

a. Near-field pressure as an integral expression. After
truncating the summation limit and inserting Eq. �93�, Eq.
�91� can be separated into finite and infinite integrals as fol-
lows:

p̃�w,z� = p̃I�
m=0

M

�m	�m +
5

2
��IFin�m,w,z� − iIInf�m,w,z�� ,

�110�

where

IFin�m,w,z� =
ka

2
	

0

k � 2

a

�m+�1/2�

Jm+�3/2��a
�

� J0�w
�
e−iz�k2−
2

�k2 − 
2
d
 �111�

and

IInf�m,w,z� =
ka

2
	

k

� � 2

a

�m+�1/2�

Jm+�3/2��a
�

� J0�w
�
e−z�
2−k2

2 2
d
 . �112�

FIG. 15. Normalized diaphragm impedance in infinite baffle with the same
parameters as in Fig. 12.
�
 − k
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b. Solution of the finite integral. Using the same pro-
cedure as in a recent paper for a resilient disk in an infinite
baffle,10 it can be shown that

FIG. 16. Near-field pressure response in infinite baffle with the same pa-
rameters as in Fig. 12.
ellow and L. Kärkkäinen: Membrane in free space and baffle 2473



IFin�m,w,z� = − �
p=0

P

�
q=0

Q
1

p!q!�ikz�2�p+q�+1� ka

2
�p−m+�1/2�

�� kw

2
�q

Jp+m+�3/2��ka�Jq�kw�

���2p + 2q + 1,ikz� . �113�

c. Solution of the infinite integral. Similarly, it can be
shown that10

IInf�m,w,z� = � 2

ka
�2m+1

�
p=0

P

�
q=0

Q
�− 1�p+q�2p + m + 3/2�

q!�k2z2 + k2a2�q−�m/2�−�1/4�

� �p + 1�m+�1/2�	�2p + 2q + 1�� kw

2
�q

� J2p+m+�3/2��ka�Jq�kw�P2q−m−�3/2�
−2p−m−�3/2�

�� z
�z2 + a2� . �114�

The normalized near-field pressure response of the mem-
brane is shown in Fig. 16 for various values of ka. The
calculations were performed using 50 digit precision with
P=M =10+ka and Q=2P.

H. Far-field pressure response

The far-field pressure is derived using the same proce-
dure as shown in Part I of Sec. II of a recent paper10 to give
the same result as Eq. �79�, except that the directivity func-
tion D��� is now given by

D��� = ka�
m=0

M

�m	�m +
5

2
�� 2

ka sin �
�m+�3/2�

�Jm+�3/2��ka sin �� , �115�

which is the same as for the free space membrane except for
the absence of the cos � term because the free space mem-
brane is a dipole, whereas the baffled membrane is a
monopole. For �=0 �i.e., on-axis�, this simplifies to

D�0� = ka�
m=0

M

�m =
ka

ZI
, �116�

using ZI from Eq. �106�. Hence the on-axis pressure simpli-
fies to

p̃�r,0� = i
ka2

4r
p̃Ie

−ikr 1

ZI
= i�

EP

d
CED

ẽin

2�rc
e−ikr 1

ZI
. �117�

Taking into account that Ĩin i�CEDẽin, leads to

�p̃�r,0��b=a 
1

ZI
·

EP

d
·

Ĩin

c
·

e−ikr

2�r
, �118�

which, in the case of ZI=1, is Walker’s equation.21 A better
approximation is given by

ZI  1 + RS/�2�c�, ka � 2, �119�

which leads to what could be termed the “modified Walker’s
equation.” The on-axis pressure response with damping is

shown in Fig. 17, together with the efficiency and peak dis-
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placement at w=0. In Fig. 18 is shown a comparison of the
on-axis responses with and without damping �the level is
reduced in order to accommodate the large undamped excur-
sions�, together with the high frequency approximation,
where the SPL is given by: SPL=20 log10�p̃�r ,0� / �20
�10−6��. The normalized directivity function
20 log10�D���� / �D�0�� is plotted in Fig. 19 for various val-
ues of ka.

IV. FINITE ELEMENT MODEL

Abaqus CAE v6.5-5 was used for the finite element
analysis. In order to save processing power, only a quarter
membrane was simulated. The analysis was carried out in
two steps using a cylindrical coordinate system. In the first
step, a boundary condition was applied to rim of the quarter
membrane, which blocked axial or tangential displacement,
but allowed radial displacement. Also, a boundary condition
of zero tangential displacement was applied to its two
straight edges. A pretension T was applied to the rim node set
using the formula

Force per node = 0.5�aT/�No. of nodes� . �120�

The second step was a steady-state dynamics analysis in
which an evenly distributed pressure of p̃I=1 Pa was applied
to the membrane surface. A limitation is that there is no
obvious way to simulate the viscous acoustic resistance
presented by a perforated screen or mesh. The elements
used for the simulation are described in Table I.

The membrane was surrounded by a quarter-sphere of
air with a radius of 0.5 m. The outer curved surface of this
quarter-sphere was coated with a skin of infinite elements in
order to prevent reflections. The air space was created as two
separate front and rear segments, which both had their ad-
joining faces partitioned where they met the rim of the mem-
brane. Each was tied to one of the surfaces of the membrane
and, in the case of the unbaffled membrane, to each other
beyond the rim. Hence, in order to simulate an infinite baffle,
the coupling between the air segments was omitted so that
the rigid boundary condition at the baffle was created auto-

FIG. 17. On-axis pressure response of push-pull electrostatic loudspeaker in
infinite baffle where a=250 mm, h=12 
m, T=700 N/m, �D=1400
kg/m3, ein=2000 Vrms, EP=3000 V, d=2 mm, r=1 m, and RS=100
Ns/m3.
T. Mellow and L. Kärkkäinen: Membrane in free space and baffle



matically without having to create a separate baffle surface.
This also allowed the same mesh to be used for both simu-
lations.

The outer curved edges of the air space were seeded
with a node density of 80 nodes/m �or 6 nodes/wavelength
in free space at 4.6 kHz�. The edges of the membrane were
seeded with higher density of 400 nodes/m �or 6 nodes/
wavelength in the membrane at 4.7 kHz�, as were also the
adjacent edges of the air space to which its edges were tied.
The remaining straight edges of the air space were left un-
seeded. Free meshing was used throughout. The total number
of air elements was 588 757 with minimum and maximum
angles of 7.5° and 143.4°, respectively. The number of mem-
brane elements was 4824 with minimum and maximum
angles of 29° and 115°, respectively. The finite size of the air
space produced some errors below 170 Hz, so the analysis at
these frequencies was performed using a 2.5 m radius
quarter-sphere with a coarser mesh density to save memory
and processing time. The on-axis responses without and with
a baffle are shown in Figs. 20 and 21, respectively.

V. DISCUSSION

At low to medium frequencies, the analytical calcula-
tions and FEM results show excellent agreement, as can be
seen in Figs. 20 and 21. However, above 1 kHz some diver-
gence occurs. This is in no doubt partly due to the discreti-
zation of the finite element model, which has a density of 6
elements per wavelength at the highest frequency shown.
There could also be some differences due to the fact that the
FEM response was calculated at a distance 0.5 m from the
source and then adjusted to 1 m by subtracting 6 dB,
whereas the analytical result was calculated using the far-
field asymptotic expression. The analytical calculations for
the free space membrane without damping show good agree-
ment with Streng’s results5 too.

It is interesting to see how the free space radiation im-
pedance in Fig. 5 is an almost monotonic function when
compared with that of a rigid disc. In this respect, it is more
like that of a resilient disc in free space 13 �or “freely sus-
pended disc”�,14 which is perhaps not surprising, considering
that the membrane is essentially a more or less evenly dis-
tributed pressure source �i.e., transparent� rather than veloc-

FIG. 18. On-axis pressure response with same parameters as in Fig. 18,
except ein=40 Vrms, and with RS=0 �undamped�.
ity one �or opaque�. As can be seen from the near-field pres-
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sure plots of Fig. 8, the surface pressure becomes more
evenly distributed at higher values of ka. However, one im-
portant difference between a membrane and a resilient disc is
that the membrane is clamped at its outer edge whereas the
resilient disc is free and therefore not realizable.13 Interest-
ingly, the real part of the membrane’s radiation impedance at
low frequencies is greater than that of the rigid disk, possibly
due to the fact that its perimeter is clamped so that most of
the sound is radiated from the center, with the remainder
acting as a semibaffle to mitigate the acoustic “short-circuit”
between the front and rear surfaces.

The baffled radiation impedance in Fig. 14 is also a
fairly smooth function, compared to that of a rigid disk, and
is therefore closer to the characteristic of a resilient disk in
an infinite baffle10 �or plane wave diffracted through a circu-

TABLE I. Summary of the finite element model.

Material Section type Element type

Membrane Membrane M3D3 Tri, 3 Node
Triangular Membrane

Air Solid
Homogeneous

AC3D4 Tet, 4 Node Linear
Acoustic Tetrahedron

Air Solid
Homogeneous.

ACIN3D3 Tri, 3 Node
Acoustic Infinite

FIG. 19. Normalized far-field directivity function in infinite baffle with
same parameters as in Fig. 17.
ellow and L. Kärkkäinen: Membrane in free space and baffle 2475



lar aperture�6. As can be seen from the near-field pressure
plots of Fig. 16, the surface pressure eventually becomes
more evenly distributed at higher values of ka and so con-
verges towards the flat pressure distribution of a resilient
disk.

It can be seen from Figs. 4 and 13 that the motional
impedance in the “piston range” above 440 Hz �or ka�2� is
mainly resistive, as is also the radiation impedance shown in
Figs. 5 and 14. In this region, as the commonly used term
“piston range” suggests, the diaphragm effectively radiates
sound power into the surrounding space and it is here that the
efficiency �see Figs. 9 and 17� is highest. The rising on-axis
response in this region appears to be fairly consistent with
that predicted by Walker’s equation, a fairly detailed discus-
sion of which is provided by Baxendall1 �edited by Bor-
wick�. This equation generally describes the free space on-
axis pressure response �with some damping� between the
fundamental resonance and the point at which the diaphragm
inertia, together with the acoustic �mainly radiation� resis-
tance, starts to take control. If the electrode structure were to
be partitioned into concentric rings, as described by
Walker,21 the on-axis response in the piston range could, in
theory, be equalized and it would be interesting to see this
included in the model. Also, the polar responses of Figs. 11
and 19 could be widened without losing power. The effect of
the baffle is to equalize the on-axis response in the lower
frequency range �ka�2� so that, with electrode partitioning,
it could be fairly flat all the way from the fundamental reso-
nance to the high frequency roll-off, at which the diaphragm
inertia begins to dominate.

The motional impedance has a minimum value at the
fundamental resonance, which is at 67 Hz in free space �see
Fig. 4� and 53 Hz in a baffle �see Fig. 13�. Here, the effi-
ciency is lowest because most of the power is being dissi-
pated in the acoustic damping resistance. �This behavior is in
contrast with that of an electrodynamic loudspeaker, which
tends to be most efficient at the suspension resonance and
then becomes less efficient with increasing frequency.� Not
surprisingly, adding a baffle greatly improves the efficiency
in this region. Below the fundamental resonance, the slope of

FIG. 20. On-axis pressure response in free space without damping: com-
parison of analytical and FEM models, where a=125 mm, h=12 
m, T
=100 N/m, �D=1667 kg/m3, pI=1 Pa, r=1 m, and zS=0.
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the on-axis response is 18 dB/octave in free space and
12 dB/octave in a baffle.

VI. CONCLUSIONS

A more direct method has been presented for calculating
the radiation characteristics of a circular membrane in free
space than previously available. Furthermore, the method has
been extended to allow for the inclusion of an infinite baffle.
In particular, equations have been derived for the motional
impedance and diaphragm impedance, as well as expansions
for the pressure field. The final equations for calculating the
power series coefficients of the free space and baffled mem-
branes are remarkably similar in form. Most of the terms are
the same, but are just arranged differently. However, the
pressure field is much easier to calculate for the baffled
membrane when the distance to the observation point is
greater than its radius.

It has also been shown how this model can be used as a
benchmark for simulation using tools such as FEM. It is not
intended, though, in this analytical versus FEM comparison,
to select a “winner.” On the contrary, the two approaches
appear to be somewhat complementary. Whereas FEM is
better suited to complicated geometries, analytical simula-
tions tend to be limited to simply geometry, typically axi-
symmetric �i.e., two-dimensional�. On the other hand, the
analytical approach has distinct advantages at the frequency
extremes and in deriving far-field asymptotic expressions.
Furthermore, describing a model with equations provides us
with a greater insight into the actual physics of the problem.
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