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Exact solutions are derived for sound radiation from four kinds of infinitely-long strips: namely a

rigid strip in a baffle of finite width, a resilient strip in free space, and a resilient or rigid strip in an

infinite baffle. In one limit, the strip in a finite baffle becomes a rigid strip in free space and in the

other, a line source in a finite baffle. Here “rigid” means that the surface velocity is uniform,

whereas “resilient” means that the surface pressure is uniform, and the strip is assumed to have

zero mass or stiffness, as if a force were driving the acoustic medium directly. According to the

Babinet–Bouwkamp principle, radiation from a resilient strip in an infinite baffle is equivalent to

diffraction of a plane wave through a slit in the same. Plots are shown for the radiation impedances,

far-field directivity patterns, and on-axis pressure responses of the four kinds of strip. A simple rela-

tionship between the radiation admittance of the rigid strip in an infinite baffle and the resilient strip

in free space is presented. The two-dimensional rectangular wave functions developed in this paper

can be applied to related problems. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

The acoustical impedance of the air load on a transducer

diaphragm of low mass and high aspect ratio has a signifi-

cant influence upon its motion and is therefore an important

factor in its design. Practical examples of such transducers

are ribbon loudspeakers and microphones or loudspeakers

comprising arrays of electrostatic1 or planar magnetic strip

radiators in configurations designed to give wide horizontal

sound dispersion but narrow vertical dispersion. Previous

studies2–4 have focused on the rigid strip in an infinite baffle

because it yields a closed-form solution, but arguably a more

realistic model is that of a strip in a baffle of finite width or

free space as analyzed here.

The related problems of diffraction by a slit in a rigid

screen and scattering by a rigid strip, where the former is

equivalent to radiation from a resilient strip in an infinite

baffle and the latter a rigid strip in free space, were computed

by Morse and Rubinstein5 using Mathieu functions, which

are greatly complicated by the fact that a whole sequence of

elliptical harmonics has to be computed at each frequency

step. In this paper, the problems are simplified by using the

boundary integral method with an integral Green’s function

that represents an inverse Fourier transform of the propa-

gated source spectra. This leads to analytical solutions in the

form of simultaneous equations.

Although Babinet6 first postulated a relationship

between the scattered field of a plane wave incident upon an

aperture in a planar screen and the field scattered from the

complementary shape removed in order to form the aperture,

it was Bouwkamp7 who formalized this mathematically. The

scattered fields are only identical in two cases: When the

screen is perfectly rigid but the complementary shape is per-

fectly resilient and vice versa. Hence the term Babinet–

Bouwkamp principle would appear to be an apt nomencla-

ture for this description. In this paper, the resilient strip in an

infinite baffle provides the scattered field for the first case

and the rigid strip in free space the second.

One configuration not considered in this paper is that of

a resilient strip in a finite baffle. If the baffle were rigid, the

problem would be greatly complicated by the fact that

boundary conditions across the strip and baffle would be a

mixture of pressure and velocity, rendering the methods

used in the rest of the paper inapplicable. Similar methods

could in theory be used to analyze a monopole resilient strip

in a resilient (i.e. pressure release) baffle, but this would bear

little resemblance to any practical application.

Although the approach used here has similarities with

that previously used to analyze rigid8,9 and resilient disks in

baffles10 and free space,11 the integral Green’s function in

cylindrical coordinates must first be recast into one in rectan-

gular coordinates. As can be seen from Eq. (A20) in the

Appendix, the problem is complicated by the fact that the

half-integer order expansions for the disk are replaced inte-

ger order expansions for the strip which contain logarithmic

and digamma functions. In Sec. II of this paper, the radiation

impedance and far-field pressure response of a rigid strip in

a finite baffle (or free space) is derived. In Sec. III, the radia-

tion impedance of a resilient strip in free space is also given.

In Sec. IV, the radiation impedance and far-field pressure

response of a resilient strip in an infinite baffle is derived. As

an example of the utility of the integral Green’s function, the

radiation impedance of a rigid strip in an infinite baffle is

reproduced in just a few steps in Sec. V.
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II. RIGID STRIP IN A FINITE BAFFLE

A. Boundary conditions

The strip of width 2a shown in Fig. 1 is mounted in a fi-

nite baffle of width 2d in the xy plane with its line of symme-

try on the y axis and oscillates in the z direction with a

harmonically time dependent velocity ~u0, thus radiating

from both sides into a homogeneous loss-free medium. The

pressure field on one side of the xy plane is the symmetrical

“negative” of that on the other, so that

~pðx; zÞ ¼ �~pðx;�zÞ: (1)

Consequently, there is a Dirichlet boundary condition in the

plane of the strip where these equal and opposite fields meet

~pðx; 0Þ ¼ 0; �1 � x < �d; d < x � 1; (2)

which is satisfied automatically. On the front and rear surfa-

ces of the baffle, there is a Neumann boundary condition

@

@z
~pðx; zÞ z¼06j ¼ 0; � d � x > �a; a < x � d: (3)

Also, on the front and rear surfaces of the strip, there is the

coupling condition

@

@z
~pðx; zÞ z¼0j ¼ �jkq0c~u0; � a � x � a; (4)

where k is the wave number given by k¼x/c¼ 2p/k, x is

the angular frequency of excitation, q0 is the density of the

surrounding medium, c is the speed of sound in that medium,

and k is the wavelength. On the front and rear surfaces of the

strip and baffle, the unknown pressures are ~pþ and ~p�,

respectively, for which a suitable trial function must be

devised that satisfies the boundary condition of zero pressure

at the edge. Here we adapt the trial function previously used

for a disk in a circular baffle8:

~pþðx0; 0Þ ¼ �~p�ðx0; 0Þ ¼ qc~u0

X1
n¼0

An 1� x2
0

d2

� �nþ1
2

;

� d � x0 � d: (5)

where An are the as yet unknown power series coefficient

that will be calculated by means of a set of simultaneous

equations in matrix form.

B. Boundary integral

The nearfield pressure is given by the dipole Rayleigh

integral or dipole part of the Kirchhoff–Helmholtz boundary

integral taking into account the surface pressure on both

faces of the piston

~pðx; zÞ ¼ �
ðd

�d

~pþðx0; 0Þ � ~p�ðx0; 0Þð Þ

� @

@z0

gðx; z x0; z0j Þ z0¼0j dx0: (6)

The classical Green’s function in three-dimensional rectan-

gular coordinates is given by

gðx; y; z x0; y0; z0j Þ ¼ e�ikR

4pR
; (7)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
. This gives

the spatial distribution observed at a point (x, y, z) due to a

point source at (x0, y0, z0). Using the Fourier transform into

the wave-number domain, Morse et al.,12 showed how this

can be converted into an integral Green’s function in cylin-

drical coordinates, often known as the Lamb13 or Sommer-

feld14 integral, which several authors have used in order to

investigate planar circular radiators.8,15,16 However, this

method is not restricted to just cylindrical coordinates and

from Morse et al.,12 it is fairly straight forward to show that

in three-dimensional rectangular coordinates the integral

Green’s function becomes

gðx;y;z x0;y0;z0j Þ

¼� i

8p2

ð1
�1

ð1
�1

e�i kxðx�x0Þþkyðy�y0Þþkzðz�z0Þð Þ
kz

dkxdky (8)

where

kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
; k2

x þ k2
y � k2

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y � k2

q
; k2

x þ k2
y > k2

:

8<
: (9)

When using this Green’s function, the integral of Eq. (6)

becomes a surface integral representing a Fourier transform

of the pressure distribution in the x0y0 plane into k-space.

The wave-number spectra is then propagated in the z direc-

tion to the xy plane where the integrals of Eq. (8) represent

the inverse Fourier transform. This is the basis of nearfield

acoustical holography,17,18 which takes advantage of the fact

that Eq. (8) allows the pressure field on either side of the

x0y0 plane to be computed even if there are sources present,

unlike Eq. (7). For finding analytical solutions, Eq. (8) also

offers distinct advantages, even though it may seem counter

intuitive to introduce extra integrals. For instance, taking the

normal gradient of Eq. (7) leads to diverging integrals andFIG. 1. Geometry of the infinite strip of width 2a in a baffle of width 2d.
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the variables within the square roots are difficult to separate

unless complicated moveable-origin coordinate systems are

used.19,20

In this paper, only systems of infinite extent in the y direc-

tion are considered, so that the classical Green’s function of

Eq. (7) reduces to the following two-dimensional form21

gðx; z x0; z0j Þ ¼ � i

4
H
ð1Þ
0 ðkRÞ; (10)

where H0
(1) is the zeroth-order Hankel function and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
. Likewise, Eq. (8) reduces to its

two-dimensional counterpart

gðx; z x0; z0j Þ ¼ � i

4p

ð1
�1

e�i kxðx�x0Þþkzðz�z0Þð Þ

kz
dkx; (11)

where

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
; k2

x � k2

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � k2
p

; k2
x > k2

�
: (12)

C. Formulation of the coupled equation for a rigid
strip

Inserting Eqs. (5) and (11) into Eq. (6) and integrating

over x0 gives

~pðx; zÞ ¼ � dqc~u0ffiffiffi
p
p

X1
n¼0

An2nC nþ 3
2

� �

�
ð1
�1

Jnþ1 kxdð Þ
ðkxdÞnþ1

e�iðkxxþkzzÞdkx; (13)

where C is the gamma function, Jn is the nth-order Bessel

function of the first kind and the following differential-inte-

gral solution has been applied22

ðd

�d

1� x2
0

d2

� �nþ1
2

eikxx0 dx0 ¼ 2

ðd

0

cos kxx0 1� x2
0

d2

� �nþ1
2

dx0

¼
ffiffiffi
p
p

d2nþ1C nþ 3
2

� � Jnþ1 kxdð Þ
ðkxdÞnþ1

: (14)

At the surface of the strip and baffle, there is the coupling

condition

@

@z
~pðx; zÞ z¼0j ¼ �ikqc~u0UðxÞ; (15)

where U(x) is a dimensionless function of the surface veloc-

ity distribution. We will use different expressions for U(x)

when considering a strip in free space and a strip or line

source in a baffle of finite width. This leads to the following

coupled equation

X1
n¼0

AnInðxÞ ¼ �UðxÞ; (16)

which is to be solved for the power series coefficients An.

Letting kx¼ kt, the integral In(x) can be split into two parts

InðxÞ ¼ InRðxÞ � iInIðxÞ; (17)

where the real part is given by

InRðxÞ ¼
2nþ1C nþ 3

2

� �
kdffiffiffi

p
p

ð1

0

cos kxt
Jnþ1 kdtð Þ
ðkdtÞnþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

dt;

(18)

and the imaginary part is given by

InIðxÞ ¼
2nþ1C nþ 3

2

� �
kdffiffiffi

p
p

ð1
1

cos kxt
Jnþ1 kdtð Þ
ðkdtÞnþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p

dt:

(19)

It is shown in the appendix that the solutions to these inte-

grals are

InRðxÞ ¼
1

2

X1
m¼0

X1
r¼0

ð�1ÞmþrC nþ 3
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ r þ 1Þ!ðmþ r þ 1Þ!

� kd

2

� �2mþ2rþ1
2x

d

� �2m

; (20)

InIðxÞ ¼
1

2p

X1
m¼0

X1
r¼0

ð�1ÞmþrC nþ 3
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ r þ 1Þ!ðmþ r þ 1Þ!

(

� kd

2

� �2mþ2rþ1

� 2 ln
kd

2

� �
þ wðmþ r þ 1

2
Þ

�

�wðmþ r þ 2Þ � wðr þ 1Þ � wðnþ r þ 2Þ
�

�
Xn

r¼0

ð�1Þmðn� rÞ!C nþ 3
2

� �
Cðmþ r � n� 1

2
Þ

ð2mÞ!r!ðmþ r � nÞ!

� kd

2

� �2mþ2r�2n�1
)

2x

d

� �2m

(21)

D. Solution of the power series coefficients for a rigid
strip in free space

Equations (20) and (21) are both expansions in (2x/d)2m.

Hence, in order to solve for the expansion coefficients, it is

useful to express the strip and baffle velocity distribution

U(x) as a function of (2x/d)2m. In the case of a strip in free

space where d¼ a, the surface velocity distribution is

UðxÞ d¼aj ¼ 1 ¼
X1
m¼0

dm0

2x

a

� �2m

; 0 � x � a; (22)

where dm0 is the Kronecker d function defined by

dm0 ¼
1; m ¼ 0

0; m 6¼ 0

�
; (23)
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Inserting Eqs. (17), (20), (21), and (22) in Eq. (16) and

equating the coefficients of (2x/a)2m yields the following

(Nþ 1)� (Nþ 1) matrix equation

M � a ¼ b) a ¼M�1 � b; (24)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ

¼ nAmðkaÞ � inKmðkaÞ;
m ¼ 0; 1;…;N

n ¼ 0; 1;…;N

�
; (25)

bðmþ 1Þ ¼ �dm0; m ¼ 0; 1;…;N; (26)

aðnþ 1Þ ¼ An; n ¼ 0; 1;…;N; (27)

and the infinite power series limits have been truncated to

order N. The two-dimensional rectangular dipole wave func-

tions nAm and nKm are defined by

nAmðkaÞ

¼ 1

2

XN

r¼0

ð�1ÞmþrC nþ 3
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ r þ 1Þ!ðmþ r þ 1Þ!
ka

2

� �2mþ2rþ1

;

(28)

nKmðkaÞ

¼ 1

2p

XN

r¼0

ð�1ÞmþrC nþ 3
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ r þ 1Þ!ðmþ r þ 1Þ!
ka

2

� �2mþ2rþ1

� 2 ln
ka

2

� �
þ wðmþ r þ 1

2
Þ � wðmþ r þ 2Þ

�

�wðr þ 1Þ � wðnþ r þ 2Þ
�
� 1

2p

Xn

r¼0

�
ð�1Þmðn� rÞ!C nþ 3

2

� �
Cðmþ r � n� 1

2
Þ

ð2mÞ!r!ðmþ r � nÞ!

� ka

2

� �2mþ2r�2n�1

: (29)

A truncation limit of N¼ 2ka was used for the calculations

in this paper. For larger values of N, no discernable differ-

ence could be seen in the plots.

E. Solution of the power series coefficients for a rigid
strip in a finite baffle

For a finite baffle, where a= d, we can employ the fol-

lowing least-mean-squares (LMS) algorithm. From Eq. (16),

let an error function be defined by

EðAnÞ ¼
ðd

�d

X1
n¼0

AnInðxÞ þ UðxÞ
�����

�����
2

dx: (30)

where

UðxÞ ¼
0; �d � x < �a
1; �a � x � a
0; a < x � d

8<
: (31)

In order to find the values of An that minimize the error, we

take the derivative of E with respect to An and equate the

result to zero

@

@An
EðAnÞ ¼ 2

ðd

�d

ImðxÞ
X1
n¼0

AnInðxÞ þ UðxÞ
 !

dx ¼ 0;

(32)

which, after truncating the infinite series limit to order N,

yields the following set of Nþ 1 simultaneous equations

XN

n¼0

An

ðd

�d

ImðxÞInðxÞdx

¼ �
ða

�a

ImðxÞdx; m ¼ 0; 1;…;N;

(33)

where

ImðxÞ ¼
X1
p¼0

mApðkdÞ � imKpðkdÞ
� � 2x

d

� �2p

; (34)

InðxÞ ¼
X1
q¼0

nAqðkdÞ � inKqðkdÞ
� � 2x

d

� �2q

: (35)

Integrating over x yields the following N�N matrix

equation

M � a ¼ b; (36)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼
XP

p¼0

XQ

q¼0

22q
mApðkdÞ � imKpðkdÞ
� �

2pþ 2qþ 1

� nAqðkdÞ � inKqðkdÞ
� �

;

m ¼ 0; 1;…;N

n ¼ 0; 1;…;N

�
; (37)

bðmþ 1Þ ¼ �
XP

p¼0

mApðkdÞ � imKpðkdÞ
� �

2pþ 1

a

d

	 
2pþ1

;

m ¼ 0; 1; � � � ;N; (38)

aðnþ 1Þ ¼ An; n ¼ 0; 1;…;N: (39)

A truncation limit of N¼ 2kd was used for the calculations

in this paper. For larger values of N, no discernable differ-

ence could be seen in the plots.

F. Solution of the power series coefficients for a line
source in a finite baffle

In the case of two line sources at a distance of a from ei-

ther side of the center of a finite baffle of width 2d, the sur-

face velocity distribution is given by

UðxÞ ¼ ddðx� aÞ; 0 � x � d
ddðxþ aÞ; �d � x � 0

�
; (40)
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where d is the Dirac d function. Inserting this into Eq. (32)

and truncating the infinite series limit to order N, yields the

following set of Nþ 1 simultaneous equations

XN

n¼0

An

ðd

d

ImðxÞInðxÞdx ¼ �d

ð0

�d

dðxþ aÞImðxÞdx

� d

ðd

0

dðx� aÞImðxÞdx;

m ¼ 0; 1;…;N; (41)

where Im(x) and In(x) are given by Eqs. (34) and (35), respec-

tively. Integrating over w and using the property of the Dirac

d function yields the same matrix equations as Eqs. (36) to

(39) except that

bðmþ 1Þ ¼ �
XP

p¼0

mApðkdÞ � imKpðkdÞ
� � a

d

	 
2p
: (42)

In the limiting case of a line source at the center of a finite

baffle of width 2d, we let a! 0 so that

bðmþ 1Þ ¼ � mA0ðkdÞ � imK0ðkdÞð Þ: (43)

A truncation limit of N¼ 2kd was used for the calculations

in this paper. For larger values of N, no discernable differ-

ence could be seen in the plots.

G. Far-field pressure for a rigid strip in a finite baffle

The far-field pressure distribution for the rigid strip in a

finite baffle is given by the dipole boundary integral of Eq.

(6), but using the far-field Green’s function in spherical-rec-

tangular coordinates:

~pðr; hÞ ¼
ðd

�d

~pþðx0; 0Þ � ~p�ðx0; 0Þð Þ

� @

@z0

gðr; hjx0; z0Þ z0¼0j dx0; (44)

In the far field, the Hankel function of Eq. (10) is simplified

by

H
ð1Þ
0 ðkRÞ R!1 ¼

ffiffiffiffiffiffiffiffi
2

pkR

r
e�iðkR�p=4Þ

����� ; (45)

together with the substitutions x¼ r sinh and z¼ r cosh,

which enable the square root to be eliminated due to the

dominance of the r terms so that the far-field Green’s func-

tion is given by

gðr; hjw0; z0Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffi
2pkr
p e�ik r�x0 sin h�z0 cos hð Þþip=4 (46)

Inserting Eqs. (5) and (46) into Eq. (44) and integrating over

the surface using Eq. (14) yields

~pðr; hÞ ¼ kaqc~u0

ffiffiffiffiffi
2a

pr

r
e�iðkr�p=4ÞDðhÞ; (47)

where the directivity function D(h) is given by

DðhÞ ¼ d

2a

ffiffiffiffiffi
p
ka

r
cos h

XN

n¼0

AnC nþ 3
2

� � 2nþ1Jnþ1 kd sin hð Þ
ðkd sin hÞnþ1

:

(48)

Directivity patterns of a rigid strip in free space and a finite

baffle of width d¼ 2a is plotted in Fig. 2. The on-axis

pressure is evaluated using the property Jnþ1 xð Þ=xnþ1
n!0j

¼ 2nþ1ðnþ 1Þ!ð Þ�1
to give

Dð0Þ ¼ d

2a

ffiffiffiffiffi
p
ka

r XN

n¼0

An

C nþ 3
2

� �
C nþ 2ð Þ ; (49)

The on-axis response 20 log10(D(0)) of a rigid strip in a

finite baffle of width d = 2a is plotted in Fig. 3 along with

those of a rigid strip in free space and an infinite baffle. The

on-axis response of a line source is plotted in Fig. 4.

H. Radiation impedance for a rigid strip in a finite baffle

The total radiation force per unit length L is the integral

of the pressure from Eq. (5) over the surface of the strip on

both sides

~F0

L
¼
ða

�a

~pþðx0; 0Þ � ~p�ðx0; 0Þð Þdx0

¼ 4aqc~u0

XN

n¼0

An2F1 �n� 1
2
; 1

2
; 3

2
; a2

d2

	 

(50)

The specific radiation impedance per side is then given by

Zs ¼
~F0

2 ~U0

¼
~F0

4La~u0

¼ Rs þ iXs (51)

where ~U0 ¼ 2La~u0 is the volume velocity per unit length L
and Rs is the specific radiation resistance per side given by

Rs ¼ qc<
XN

n¼0

An2F1 �n� 1
2
; 1

2
; 3

2
; a2

d2

	 
 !
(52)

and Xs is the radiation reactance per side given by

Xs ¼ qc=
XN

n¼0

An2F1 �n� 1
2
; 1

2
; 3

2
; a2

d2

	 
 !
(53)

In the case of a strip in free space without a baffle, where

a¼ d, these expressions become

Rs ¼ qc

ffiffiffi
p
p

2
<
XN

n¼0

An

Cðnþ 3
2
Þ

Cðnþ 2Þ

 !

� p2k3a3

32
qc; ka < 0:3 (54)

Xs ¼ qc

ffiffiffi
p
p

2
=
XN

n¼0

An

Cðnþ 3
2
Þ

Cðnþ 2Þ

 !

� pka

4
qc; ka < 0:3 (55)
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The radiation resistance and reactance of a rigid strip in a fi-

nite baffle of width d = 2a is plotted in Fig. 5 along with

those of a rigid strip in an infinite baffle and free space. The

radiation conductance and susceptance of a rigid strip in free

space are plotted along with those of a resilient strip in free

space in Fig. 8.

III. RESILIENT STRIP IN FREE SPACE

A. Far-field pressure for a resilient strip in free space

The far-field pressure for a resilient strip of width 2a in

free space with a uniform surface pressure distribution is

obtained by the same procedure as before but using

~pþðx0; 0Þ ¼ �~p�ðx0; 0Þ ¼ ~p0=2 in Eq. (44) instead of Eq. (5)

to obtain

~pðr; hÞ ¼ ~p0

ffiffiffiffiffiffiffiffi
a

2pr

r
e�iðkr�p=4ÞDðhÞ; (56)

where the directivity function D(h) is given by

DðhÞ ¼ sinðka sin hÞffiffiffiffiffi
ka
p

sin h
cos h: (57)

Directivity patterns of a resilient strip in free space are plot-

ted in Fig. 6. The on-axis pressure is given by Dð0Þ ¼
ffiffiffiffiffi
ka
p

,

which is plotted in Fig. 7 along with the on-axis response of

a resilient strip in an infinite baffle.

FIG. 2. Directivity patterns of a rigid strip in a baffle of width d¼ 2a and in

free space.

FIG. 3. On-axis response of a rigid strip in finite baffles of various widths,

where d¼ a, 2a, and1.

FIG. 4. On-axis response of a line source in a finite baffle of width 2d.
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A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



B. Radiation admittance for a resilient strip in free
space

In the case of a resilient strip in free space, we replace

Eq. (5) with ~pþðx0; 0Þ ¼ �~p�ðx0; 0Þ ¼ ~p0=2. Inserting this

together with Eqs. (1) and (11) into Eq. (6) and integrating

over x0 yields

~pðx; zÞ ¼ ~p0

2p

ð1
�1

sin kxa

kx
e�i kxxþkz zj jð Þdkx; (58)

The total volume velocity per unit length L is then given by

~U0 ¼ �
L

ikqc

ða

�a

@

@z
~pðx; zÞ z¼0j dx

¼ 2L~p0

pkqc

ð1
0

sin kxa

kx

� �2

kzdkx; (59)

With the substitution kx¼ kt, the infinite integral can be split

into real and imaginary parts. The specific radiation admit-

tance per side is

Ys ¼
~U0

aL~p0

¼ Gs � iBs; (60)

where Gs is the specific radiation conductance per side given

by

Gs ¼
2ka

pqc

ð1

0

sin kat

kat

� �2 ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

dt

¼ qc
J0ð2kaÞ � 1

2ka
þ ka1F2

1

2
;
3

2
; 2;�k2a2

� �� �

� qc
ka

2
; ka < 0:5; (61)

FIG. 5. Normalized radiation impedance of a rigid strip in finite baffles of

various widths, where d¼ a, 2a, and1.

FIG. 8. Normalized radiation admittances of rigid and resilient strips in free

space.FIG. 6. Directivity patterns of a resilient strip in free space.

FIG. 7. On-axis responses of a resilient strip in free space and in an infinite

baffle.
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and Bs is the specific radiation susceptance per side given by

Bs¼
2ka

pqc

ð1
1

sinkat

kat

� �2 ffiffiffiffiffiffiffiffiffiffiffi
t2�1
p

dt

¼ qc
1

2ka

4

p
�1

2
þ1

2
G2;2

3;5 k2a2
1;1;3

2

1;1;0;0;1
2

�����
 ! !

: (62)

where G is the Meijer G-function. The normalized conduct-

ance and susceptance of a resilient strip in free space are

plotted in Fig. 8 along with those of a rigid strip in free

space.

IV. RESILIENT STRIP IN AN INFINITE BAFFLE

A. Boundary conditions

The strip of width 2a shown in Fig. 1 is mounted in an

infinite baffle in the xy plane with its line of symmetry on the

y axis so that the limits of the baffle shown at d and - d are

no longer applicable. The infinitesimally thin membrane-like

resilient strip is assumed to be perfectly flexible, has zero

mass, and is free at its outer edges. It is driven by a uni-

formly distributed harmonically varying pressure ~p0 and thus

radiates sound from both sides into a homogeneous loss-free

acoustic medium. In fact, there need not be a strip present at

all and instead the driving pressure could be acting upon the

air particles directly. However, for expedience, the area over

which this driving pressure is applied shall be referred to as

a strip from here onward. On the surface of the strip and baf-

fle, the following boundary conditions apply:

@

@z
~pðx; zÞ z¼0þj

¼
�ikqc~uðx; zÞ z¼0j ; �a � x � a

0; �1 � x < a; a < x � 1

�
(63)

where

~uðx; zÞ z¼0j ¼ ~p0

qc

X1
n¼0

An 1� x2

a2

� �n�1
2

; (64)

where An are the as yet unknown power series coefficient

that will be calculated by means of a set of simultaneous

equations in matrix form and k is the wave number given by

k ¼ x
c
¼ 2p

k
; (65)

where x is the angular frequency of excitation, q is the den-

sity of the surrounding medium, c is the speed of sound in

that medium, and k is the wavelength. The annotation ~

denotes a harmonically time-varying quantity and replaces

the factor eixt. It is worth noting that the index of the first

term of the expansion (m¼ 0) is equal to �1/2, in order to

satisfy the boundary condition of infinite velocity at the

perimeter, as determined by Rayleigh.23 The same expansion

can be applied to any velocity distribution, provided that the

velocity is either infinite or zero at the perimeter. For exam-

ple, in the case of an infinite membrane strip with a clamped

edge, the index of the first term would be equal to þ1/2.

On the front and rear surfaces of the strip, the pressures

are ~pþ and ~p�, respectively, which are given by

~pðx; zÞz¼0þ ¼ �~pðx; zÞz¼0� ¼
~p0

2
: (66)

B. Boundary integral

The nearfield pressure is given by the monopole Rayleigh

integral or monopole part of the Kirchhoff–Helmholtz bound-

ary integral taking into account the double strength source

~pðx; zÞ ¼ 2

ða

�a

@

@z0

~pðx0; zÞ z¼0þj gðx; z x0; z0j Þ z0¼0j dx0;

(67)

where the Green’s function in rectangular coordinates is

given by Eq. (11).

C. Formulation of the coupled equation for a resilient
strip

Inserting Eqs. (63), (64), and (11) into Eq. (6) and inte-

grating over x0 gives

~pðx; zÞ ¼ � ka~p0ffiffiffi
p
p

X1
n¼0

An2n�1C nþ 1
2

� �

�
ð1
�1

Jn kxað Þ
ðkxaÞn

e�i kxxþkz zj jð Þ

kz
dkx; (68)

where the following differential-integral solution has been

applied22

ða

�a

1� x2
0

a2

� �n�1
2

eikxx0 dx0 ¼ 2

ða

0

cos kxx0 1� x2
0

a2

� �n�1
2

dx0:

¼
ffiffiffi
p
p

a2nC nþ 1
2

� � Jn kxað Þ
ðkxaÞn

(69)

Applying the boundary condition of Eq. (66) leads to the

coupled equation

X1
n¼0

AnInðxÞ ¼ �UðxÞ ¼ �1; (70)

which is to be solved for the power series coefficients An.

Letting kx¼ kt, the integral In(x) can be split into two parts

InðxÞ ¼ InRðxÞ þ iInIðxÞ; (71)

where the real part is given by

InRðxÞ ¼
2nþ1C nþ 1

2

� �
kaffiffiffi

p
p

ð1

0

Jn katð Þ
ðkatÞn

cos kxtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dt; (72)
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and the imaginary part is given by

InIðxÞ ¼
2nþ1C nþ 1

2

� �
kaffiffiffi

p
p

ð1
1

Jn katð Þ
ðkatÞn

cos kxtffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p dt: (73)

Using the same expansions and contour of integration as

shown in the appendix for the rigid strip in a finite baffle, the

solutions to these integrals can be shown to be

InRðxÞ ¼ 2
X1
m¼0

X1
r¼0

ð�1ÞmþrC nþ 1
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ rÞ!ðmþ rÞ!

� ka

2

� �2mþ2rþ1
2x

a

� �2m

; (74)

InIðxÞ ¼�
2

p

X1
m¼0

X1
r¼0

ð�1ÞmþrC nþ 1
2

� �
Cðmþ rþ 1

2
Þ

ð2mÞ!r!ðnþ rÞ!ðmþ rÞ!

(

� ka

2

� �2mþ2rþ1

� 2 ln
ka

2

� �
þwðmþ rþ 1

2
Þ

�

�wðmþ rþ 1Þ�wðrþ 1Þ�wðnþ rþ 1Þ
�

�
Xn�1

r¼0

ð�1Þmðn� r� 1Þ!C nþ 1
2

� �
Cðmþ r� nþ 1

2
Þ

ð2mÞ!r!ðmþ r� nÞ!

� ka

2

� �2mþ2r�2nþ1
)

2x

a

� �2m

(75)

D. Solution of the power series coefficients for a
resilient strip in an infinite baffle

Equations (74) and (75) are both expansions in (2x/a)2m.

Hence, in order to solve for the expansion coefficients, it is

useful to express the strip pressure distribution U(x) as a

function of (2x/a)2m, so that

UðxÞ d¼aj ¼ 1 ¼
X1
m¼0

dm0

2x

a

� �2m

; 0 � x � a; (76)

where dm0 is the Kronecker d function as defined in Eq. (23).

Inserting Eqs. (71), (74), (75), and (76) in Eq. (70) and

equating the coefficients of (2x/a)2m yields the following

(Nþ 1)� (Nþ 1) matrix equation

M � a ¼ b) a ¼M�1 � b; (77)

where the matrix M and vectors a and b are given by

Mðmþ 1; nþ 1Þ ¼ nCmðkaÞ � inImðkaÞ;

m ¼ 0; 1;…;N

n ¼ 0; 1;…;N

(
; (78)

bðmþ 1Þ ¼ �dm0; m ¼ 0; 1;…;N; (79)

aðnþ 1Þ ¼ An; n ¼ 0; 1;…;N; (80)

and the infinite power series limits have been truncated to

order N. The two-dimensional rectangular monopole wave

functions nCm and nIm are defined by

nCmðkaÞ ¼ 2
XN

r¼0

ð�1ÞmþrC nþ 1
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ rÞ!ðmþ rÞ!

� ka

2

� �2mþ2rþ1

; (81)

nImðkaÞ ¼ 2

p

XN

r¼0

ð�1ÞmþrC nþ 1
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ rÞ!ðmþ rÞ!

� ka

2

� �2mþ2rþ1

� 2 ln
ka

2

� �
þ wðmþ r þ 1

2
Þ

�

�wðmþ r þ 1Þ � wðr þ 1Þ � wðnþ r þ 1Þ
�

� 2

p

Xn�1

r¼0

ð�1Þmðn� r � 1Þ!C nþ 1
2

� �
Cðmþ r � nþ 1

2
Þ

ð2mÞ!r!ðmþ r � nÞ!

� ka

2

� �2mþ2r�2nþ1

: (82)

A truncation limit of N¼ 2ka was used for the calculations

in this paper. For larger values of N, no discernable differ-

ence could be seen in the plots.

E. Far-field pressure for a resilient strip in an infinite
baffle

The far-field pressure distribution for the resilient strip

in an infinite baffle is given by the monopole boundary inte-

gral of Eq. (67) but using the far-field Green’s function in

spherical-rectangular coordinates:

~pðr; hÞ ¼ 2

ða

�a

@

@z0

~pðx0; zÞ z¼0þj gðr; h x0; z0j Þ z0¼0j dx0;

(83)

where the far-field Green’s function is given by Eq. (46).

Inserting Eqs. (46), (63), and (64) into Eq. (83) and integrat-

ing over the surface using Eq. (69) yields

~pðr; hÞ ¼ ~p0

ffiffiffiffiffiffiffiffi
a

2pr

r
e�i kr�p=4ð ÞDðhÞ; (84)

where the directivity function D(h) is given by

DðhÞ ¼ �i
ffiffiffiffiffiffiffiffi
pka
p XN

n¼0

AnC nþ 1
2

� � 2nJn ka sin hð Þ
ðka sin hÞn : (85)

Directivity patterns of a resilient strip in an infinite baffle are

plotted in Fig. 9. The on-axis pressure is evaluated using the

property Jn xð Þ=xn
n!0j ¼ 2nn!ð Þ�1

to give
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Dð0Þ ¼ �i
ffiffiffiffiffiffiffiffi
pka
p XN

n¼0

An

C nþ 1
2

� �
C nþ 1ð Þ ; (86)

which at low and high frequencies can be approximated by

Dð0Þ �

ffiffiffiffiffi
ka
p

; ka > 2

� p

2
ffiffiffiffiffi
ka
p

lnðka=4Þ
; ka! 0

8<
: (87)

The on-axis responses 20 log10(D(0)) of a resilient strip in an

infinite baffle is plotted in Fig. 7 along with that of a resilient

strip in free space.

F. Radiation admittance for a resilient strip in an
infinite baffle

The average velocity is the integral of the velocity from

Eq. (64) over the width of the strip divided by the width

~u0 ¼
1

2a

ða

�a

~uðx; zÞ z¼0j dx0 ¼
ffiffiffi
p
p

~p0

2qc

X1
n¼0

An

Cðnþ 1
2
Þ

Cðnþ 1Þ
(88)

The specific radiation admittance per side is then given by

Ys ¼
2~u0

~p0

¼ Gs þ iBs (89)

where Gs is the specific radiation conductance per side given

by

Gs ¼
ffiffiffi
p
p

qc
<
XN

n¼0

An

Cðnþ 1
2
Þ

Cðnþ 1Þ

 !
(90)

and Bs is the radiation susceptance per side given by

Bs ¼
ffiffiffi
p
p

qc
=
XN

n¼0

An

Cðnþ 1
2
Þ

Cðnþ 1Þ

 !
(91)

Then Rs is the radiation resistance per side is then given by

Rs ¼
Gs

G2
s þ B2

s

� ka; ka < 0:3 (92)

and Bs is the radiation susceptance per side given by

Xs ¼
Bs

G2
s þ B2

s

� � 2ka

p
ln

ka

4

� �
þ c

� �
; ka < 0:3 (93)

where c¼ 0.5772 is Euler’s constant. The radiation resist-

ance and reactance of a resilient strip in an infinite baffle are

plotted along with those of a rigid strip in an infinite baffle in

Fig. 10.

V. RIGID STRIP IN AN INFINITE BAFFLE

A. Far-field pressure for a rigid strip in an infinite
baffle

The far-field pressure for a rigid strip of width 2a in an

infinite baffle with a uniform surface velocity distribution is

obtained by same procedure as before but using

~uðx; zÞ z¼0j ¼ ~u0 in Eq. (83) instead of Eq. (64) to obtain

~pðr; hÞ ¼ �ikaqc~u0

ffiffiffiffiffi
2a

pr

r
e�i kr�p=4ð ÞDðhÞ; (94)

where the directivity function D(h) is given by

DðhÞ ¼ sinðka sin hÞ
ðkaÞ3=2

sin h
: (95)

FIG. 9. Directivity patterns of a resilient strip in an infinite baffle.

FIG. 10. Normalized radiation admittances of resilient and rigid strips in an

infinite baffle.
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A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



Directivity patterns of a rigid strip in an infinite baffle are

plotted in Fig. 11. The on-axis pressure is given by

Dð0Þ ¼ 1=
ffiffiffiffiffi
ka
p

, as shown in Fig. 3.

B. Radiation impedance for a rigid strip in an infinite
baffle

In the case of a rigid strip in an infinite baffle, we

replace Eq. (64) with ~uðx; zÞ z¼0j ¼ ~u0. Inserting this together

with Eqs. (63) and (11) into Eq. (67) and integrating over x0

yields

~pðx; zÞ ¼ �kqc~u0

1

p

ð1
�1

sin kxa

kx

e�i kxxþkz zj jð Þ

kz
dkx; (96)

The total radiation force per length L on both sides is then

given by

~F0

L
¼ �2

ða

�a

~pðx; zÞ z¼0j dx

¼ 8kqc~u0

1

p

ð1
0

sin kxa

kx

� �2
1

kz
dkx: (97)

With the substitution kx¼ kt, the infinite integral can be split

into real and imaginary parts. The specific radiation imped-

ance per side is

Zs ¼
~F0

4aL~u0

¼ Rs þ iXs; (98)

where Rs is the specific radiation resistance per side given by

Rs ¼ qc
2ka

p

ð1

0

sin kat

kat

� �2
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p dt

¼ qcka1F2

1

2
;
3

2
; 2;�k2a2

� �

� qcka; ka < 0:5; (99)

and Xs is the specific radiation reactance per side given by

Xs ¼ qc
2ka

p

ð1
1

sin kat

kat

� �2
1ffiffiffiffiffiffiffiffiffiffiffiffi

t2 � 1
p dt

¼ qc
1

2ka
G2;1

2;4 k2a2
1; 3

2

1; 1; 0; 1
2

�����
 !

� qc
2ka

p
3

2
� c� ln kað Þ

� �
; ka < 0:5; (100)

where F is the hypergeometric function, G is the Meijer G
function, and c¼ 0.5772 is Euler’s constant. The radiation

resistance and reactance of a rigid strip in an infinite baffle

are plotted along with those of a resilient strip in an infinite

baffle in Fig. 10.

VI. RELATIONSHIP BETWEEN A RIGID STRIP IN AN
INFINITE BAFFLE AND A RESILIENT STRIP IN FREE
SPACE

Suppose that the radiation resistance and reactance of a

rigid strip in an infinite baffle are denoted by Rs and Xs,

respectively, and Gs and Bs are the radiation conductance

and susceptance, respectively, of a resilient strip in free

space defined in Eqs. (61) and (62). Then

ðqcÞ2 d

dðkaÞ kaGsðkaÞ

¼ RsðkaÞ ¼ qcka1F2

1

2
;
3

2
; 2;�k2a2

� �
; (101)

or

GsðkaÞ ¼ 1

kaðqcÞ2
ð

RsðkaÞdðkaÞ � 1

2

� �
; (102)

and

ðqcÞ2 d

dðkaÞ kaBsðkaÞ

¼ XsðkaÞ ¼ qc
1

2ka
G2;1

2;4 k2a2
1; 3

2

1; 1; 0; 1
2

�����
 !

(103)

or

BsðkaÞ ¼ 1

kaðqcÞ2
ð

XsðkaÞdðkaÞ � 1

2
þ 4

p

� �
: (104)

FIG. 11. Directivity patterns of a rigid strip in an infinite baffle.
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VII. DISCUSSION

Like a rigid disk in a finite baffle, the on-axis response

of a rigid strip in a finite baffle shown in Fig. 3 exhibits

peaks and dips due to constructive and destructive interfer-

ence from the rear wave. However, these features are less

pronounced, even in the limiting case of a line source shown

in Fig. 4, which suggests that a transducer with a large aspect

ratio in a finite baffle is more desirable than a circular one.

The far-field pressure of a plane wave radiator (e.g., oscillat-

ing infinite wall or piston radiating into an infinite tube) is

proportional to the velocity of the radiator, whereas the far-

field pressure of a circular or finite piston in an infinite baffle

is proportional to the acceleration (i.e., first time derivative

of the velocity) of the radiator because the waves are spread-

ing out three-dimensionally as opposed to one dimension-

ally. In the case of an infinite strip in an infinite baffle, the

waves spread out two dimensionally so that the far-field

pressure is proportional to the half derivative of the velocity,

which explains why the response is proportional to the

inverse square-root of the frequency when the acceleration is

constant. For a circular or finite piston, the response is flat

under constant acceleration. Hence, the response of the infi-

nite ribbon is tilted toward the low frequencies with a slope

of 3 dB/octave. This tilt is applied to all of the on-axis

responses (see Figs. 3, 4, and 7) when compared with circu-

lar radiators of the same type.

The fact that infinite strips radiate more power at low

frequencies than circular disks is also reflected in the imped-

ance and admittance curves (see Figs. 5, 8, and 10). For

instance, the radiation resistance of a rigid strip in free space

is proportional to k3a3 but for a circular rigid piston it is pro-

portional to k4a4. Furthermore, the radiation conductance of

a resilient strip in free space and the radiation resistance of a

resilient or rigid strip in an infinite baffle are all proportional

to ka, whereas the corresponding quantities for circular radi-

ators are all proportional to k2a2.

As with circular radiators, nulls in the far-field directiv-

ity patterns occur when either the velocity or pressure is uni-

form over the radiating surface and the same quantity that is

uniform over the surface is also zero in the surrounding

plane. This is demonstrated in Figs. 6 and 11. Although the

remaining directivity patterns, which result from mixed

boundary conditions over the radiators and their surrounding

planes, do show large variations in pressure with angle, no

nulls occur (see Figs. 2 and 9).

VIII. CONCLUSIONS

Methods previously used to analyze circular radiators

have been extended to four kinds of infinite strip, which

involve more complicated wave functions. Although both

types of problem are two dimensional from a computational

point of view, the circular radiators are physically three

dimensional, albeit axisymmetrical. Hence, these solutions

provide insight into the differences between two- and three-

dimensional sound radiation. It would be interesting to see

this method extended to a three-dimensional problem of

practical importance such as sound radiation from a rectan-

gular piston in a finite baffle or free space. The authors have

verified that expansions similar to those derived by Stenzel19

for a rigid rectangular piston in an infinite baffle can be

obtained. The results also agree well with those of Bank and

Wright,20 whose findings were obtained somewhat less effi-

ciently than Stenzel using numerical integration.

The two-dimensional rectangular wave functions devel-

oped in this paper can be applied to fluid-structure coupled

problems such as infinitely long membranes and clamped or

simply supported plates.

APPENDIX: SOLUTION OF THE INTEGRALS FOR A
RIGID STRIP IN A FINITE BAFFLE

A. Solution of the real integral

The integral of over t in Eq. (18) is solved by applying

the following expansions

cos kxt ¼
X1
m¼0

ð�1ÞmðkxtÞ2m

ð2mÞ! : (A1)

Jnþ1ðkdtÞ ¼
X1
r¼0

ð�1Þr

r!Cðr þ nþ 2Þ
kdt

2

� �2rþnþ1

; (A2)

together with the integral solution

ð1

0

t2mþ2r
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

dt ¼
ffiffiffi
p
p

Cðmþ r þ 1
2
Þ

4Cðmþ r þ 2Þ ; (A3)

which yields

InRðxÞ ¼
1

2

X1
m¼0

X1
r¼0

ð�1ÞmþrC nþ 3
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ r þ 1Þ!ðmþ r þ 1Þ!

� kd

2

� �2mþ2rþ1
2x

d

� �2m

: (A4)

B. Solution of the imaginary integral

The following procedure converts the infinite limit of

the integral in Eq. (19) into a finite one. First, the integral is

converted into a form that can be integrated in the complex

plane. The Bessel function Jnþ1(t) can be written in terms of

the following pair of complex conjugate functions:

Jnþ1ðkdtÞ ¼
H
ð1Þ
nþ1ðkdtÞ þ H

ð2Þ
nþ1ðkdtÞ

2
; (A5)

where the Hankel functions H
ð1Þ
nþ1 and H

ð2Þ
nþ1 are defined in

terms of Bessel functions of the first and second kind Jn and

Yn, respectively, by

H
ð1Þ
nþ1ðkdtÞ ¼ Jnþ1ðkdtÞ þ iYnþ1ðkdtÞ; (A6)

H
ð2Þ
nþ1ðkdtÞ ¼ Jnþ1ðkdtÞ � iYnþ1ðkdtÞ; (A7)
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A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



which can be used to separate InI into two complex conjugate

integrals as follows

InIðxÞ ¼
I
ð1Þ
nI ðxÞ þ I

ð2Þ
nI ðxÞ

2
; (A8)

where the complex conjugate integrals are given by

I
ð1Þ
nI ðxÞ¼

2nþ1C nþ 3
2

� �
kdffiffiffi

p
p

ð1
1

coskxt
H
ð1Þ
nþ1 kdtð Þ
ðkdtÞnþ1

ffiffiffiffiffiffiffiffiffiffiffi
t2�1
p

dt;

(A9)

I
ð2Þ
nI ðxÞ¼

2nþ1C nþ 3
2

� �
kdffiffiffi

p
p

ð1
1

coskxt
H
ð2Þ
nþ1 kdtð Þ
ðkdtÞnþ1

ffiffiffiffiffiffiffiffiffiffiffi
t2�1
p

dt:

(A10)

Referring to the complex t plane of Fig. 11: Directivity pat-

terns of a rigid strip in an infinite baffle.

In Figure 12, the integrals InI
(1) and InI

(2) can now be

evaluated along contours X(1) and X(2), respectively. The

contours are defined by

Xð1Þ ¼ t 2 ðCð1Þr [ C
ð1Þ
R [ C

ð1Þ
i [ Cð1Þc Þ;

Cð1Þr ¼ ½1;R�;

C
ð1Þ
R ¼ ½Rei# 0 � # � p=2j �;

C
ð1Þ
i ¼ ½iR; i�;

Cð1Þc ¼ ½ei# p=2 � # � 0j �;
R!1;
Xð2Þsymmetric to Xð1Þwith respect to the real axis:

(A11)

1. Contribution of CR
(1) and CR

(2)

The contributions along CR
(1) and CR

(2) vanish for R !
1 due to the behavior of Hnþ1ðkrtÞ as tj j!1.

2. Contribution of Ci
(1) and Ci

(2)

Noting that
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

, the integral along Ci
(1)

can be written

i2nþ1C nþ 3
2

� �
kdffiffiffi

p
p

ði1

i

cos kxt
H
ð1Þ
nþ1 kdtð Þ
ðkdtÞnþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

dt; (A12)

which can be converted into an integral with real limits by

substituting t¼ is as follows:

�
2nþ1C nþ 3

2

� �
kdffiffiffi

p
p

ð1
1

cos ikxs
H
ð1Þ
nþ1 ikdsð Þ
ðikdsÞnþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
ds:

(A13)

With help from the following identities:

K�ðxÞ ¼ i�þ1 p
2

Hð1Þ� ðixÞ (A14)

cos ix ¼ cosh x; (A15)

the integral can be written as

i
2nþ2C nþ 3

2

� �
kd

p3=2

ð1
1

cosh kxs
Knþ1 kdsð Þ
ð�kdsÞnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
ds

(A16)

where K� is the modified or hyperbolic Hankel function.

This integral is purely imaginary whereas the original is real

valued. Hence, there is zero net contribution along Ci
(1). The

same is true for the contribution along Ci
(2) whereffiffiffiffiffiffiffiffiffiffiffiffi

t2 � 1
p

¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

.

3. Contribution of Cc
(1) and Cc

(2)

Finally, the contributions along the unity quarter circle

segments Cc
(1) and Cc

(2) can be calculated by using the sub-

stitution t¼ ei#, so that the contribution along Cc
(1) becomes

2nþ1C nþ 3
2

� �
kdffiffiffi

p
p
ðkdÞnþ1

< i

ð0

p=2

cos kxei#H
ð1Þ
nþ1 kdei#
� � 

� e�ni#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i# � 1
p

d#

�
(A17)

and likewise the contribution along Cc
(2) becomes

2nþ1C nþ 3
2

� �
kdffiffiffi

p
p
ðkdÞnþ1

< i

ð0

�p=2

cos kxei#H
ð2Þ
nþ1 kdei#
� � 

�e�ni#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i# � 1
p

d#


; (A18)

which is equal to Eq. (A17). As there are no poles or zeros

within the contours X(1) or X(2), it can be stated that, accord-

ing to the residue theorem, the sum of the integrals around

each of these contours is equal to zero. Therefore, InI(x) can

be written as

FIG. 12. Contours of integration.
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InIðxÞ¼
I
ð1Þ
nI ðxÞþI

ð2Þ
nI ðxÞ

2
¼

2nþ1C nþ3
2

� �
kdffiffiffi

p
p
ðkdÞnþ1

�< i

ðp=2

0

coskxei#H
ð1Þ
nþ1 kdei#
� �

e�ni#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i#�1
p

d#

 !
:

(A19)

4. Expansion and solution

We now apply the expansion of Eqs. (A2) and (A1) to

Eq. (A19) together with

Ynþ1ðxÞ ¼
2

p
ln

x

2

	 

Jnþ1ðxÞ �

1

p

Xn

r¼0

ðn� rÞ!
r!

x

2

	 
2r�n�1

� 1

p

X1
r¼0

ð�1Þr wðr þ 1Þ þ wðr þ nþ 2Þð Þ
r!ðr þ nþ 1Þ!

x

2

	 
2rþnþ1

(A20)

where w is the Euler psi function or digamma function. Using the following integral solutions

ðp=2

0

eið2mþ2rþ1Þ#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i# � 1
p

d# ¼ �
ffiffiffi
p
p

Cðmþ r þ 1
2
Þ

4Cðmþ r þ 2Þ þ i
2
ffiffiffi
2
p
ð�1Þmþr

2F1ð1;mþ r þ 2; mþ r þ 3
2
;�1Þ

2mþ 2r þ 1
(A21)

ðp=2

0

i#eið2mþ2rþ1Þ#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i# � 1
p

d# ¼ �
pð�1Þmþr

2F1 �1
2
;mþ r þ 1

2
; mþ r þ 3

2
;�1

� �
2ð2mþ 2r þ 1Þ

�
ffiffiffi
p
p

Cðmþ r þ 1
2
Þ wðmþ r þ 1

2
Þ � wðmþ r þ 2Þ

� �
8Cðmþ r þ 2Þ

� i
2ð�1Þmþr

3F2 �1
2
;mþ r þ 1

2
;mþ r þ 1

2
; mþ r þ 3

2
;mþ r þ 3

2
;�1

� �
ð2mþ 2r þ 1Þ2

(A22)

ðp=2

0

eið2mþ2r�2n�1Þ#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i# � 1
p

d# ¼ �
ffiffiffi
p
p

Cðmþ r � n� 1
2
Þ

4Cðmþ r � nþ 1Þ þ i
2
ffiffiffi
2
p
ð�1Þmþr�n�1

2F1ð1;mþ r � nþ 1; mþ r � nþ 1
2
;�1Þ

2mþ 2r � 2n� 1
:

(A23)

and noting that lnðkdei#=2Þ ¼ i#þ lnðkd=2Þ and 2F1 �1
2
;mþ r

�
þ1

2
; mþ r þ3

2
;�1Þ�2

ffiffiffi
2
p

2F1ð1;mþ r þ 2; mþ r þ 3
2
;�1Þ ¼ 0

yields

InIðxÞ ¼
1

2p

X1
m¼0

X1
r¼0

ð�1ÞmþrC nþ 3
2

� �
Cðmþ r þ 1

2
Þ

ð2mÞ!r!ðnþ r þ 1Þ!ðmþ r þ 1Þ!
kd

2

� �2mþ2rþ1
(

� 2 ln
kd

2

� �
þ wðmþ r þ 1

2
Þ � wðmþ r þ 2Þ � wðr þ 1Þ � wðnþ r þ 2Þ

� �

�
Xn

r¼0

ð�1Þmðn� rÞ!C nþ 3
2

� �
Cðmþ r � n� 1

2
Þ

ð2mÞ!r!ðmþ r � nÞ!
kd

2

� �2mþ2r�2n�1
)

2x

d

� �2m

(A24)
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