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The equations for the electromechanical force conversion in single-ended and push-pull electret
transducers are derived. Traditionally, the charge distribution has been modeled as a concentrated
layer at an arbitrary distance from the surface of the dielectric. For the purpose of this analysis, a
negative charge is assumed to be evenly distributed throughout the dielectric. The membrane has a
conductive coating in which a positive charge is induced, giving an overall dipole charge. The
resulting formulas are used to derive the voltage sensitivity of a microphone and the equivalent
electrical circuit for the electromechanical transduction part of a microphone or loudspeaker. An
equivalent external polarizing voltage is then derived that would produce the same driving force in
a conventional electrostatic loudspeaker without a stored charge. The condition for the static
stability of a circular electret membrane is also determined.
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I. INTRODUCTION

Since the electret microphone was introduced,1,2 it has
almost completely replaced all other types in the field of
communications due to its robustness, reliability, and near
studio quality. However, the application of an electret loud-
speaker has remained largely elusive and electrostatic loud-
speakers still invariably use an external polarizing supply in
order to create a monopole charge in the conductive layer of
the central membrane. The advantage of a monopole charge
is that for a given membrane charge, the field does not vary
with electrode separation. Electret membranes usually have a
conductive coating which, while increasing the charge stor-
age stability, produces a dipole charge. That is, a charge of
the opposite polarity to that contained by the membrane is
induced in the metallic coating. As a result, for a given mem-
brane charge, the field decreases with increasing electrode
separation. This is not such a major issue in the case of a
microphone, where the electrode separation is typically very
small, but in the case of a loudspeaker, wider separation is
needed in order to achieve the volume acceleration that, in
turn, is required to give a reasonable sound pressure level at
some distance from it. Hence, membranes with a monopole
charge have been investigated.3,4 In recent years, electret
membrane technology has been developing in terms of both
the charge storage stability and maximum charge density.
Porous membranes,5,6 in particular, have received much at-
tention and store enough charge to compensate for the dipole
effect, having internal potentials of up to 500–1000 V.
Hence, only dipole membranes are considered in this paper.

In accordance with Paschen’s curve,7 dipole charges are
induced in the pores �pore size greater than 1 �m� by break-
ing down air inside the pores during the charging process.
Both dipole and monocharges can be trapped in a porous
electret dielectric. The pore size and pore density influences

the relative density of dipole and monocharges. In general,

J. Acoust. Soc. Am. 124 �3�, September 2008 0001-4966/2008/124�3
the piezoelectric effect is found in porous electrets when the
pore size is a few micrometers. On the other hand, reducing
the size and density of the pores increases the amount of
monocharge. In this paper, it is assumed that the monocharge
dominates in a nanoporous material and, although the exact
charge distribution is usually unknown, a possible distribu-
tion is shown in Fig. 1. It is likely that some charge will be
lost at the outer faces, especially the one adjoining the con-
ductive coating, where there will be some recombination
with the positive charge induced in the coating. Hence, there
will be a peak somewhere near the middle. However, in or-
der to approximate this, a uniform charge distribution is as-
sumed throughout the membrane.

For loudspeakers, another issue is that of space. Most
pressure �or monopole� microphones convert pressure into
mechanical displacement which in turn produces electrical
charge displacement. Hence, they operate in the displace-
ment controlled frequency range below the fundamental me-
chanical resonance. Loudspeakers, on the other hand, have to
produce volume acceleration. Hence, they operate in the ac-
celeration controlled frequency range above the fundamental
mechanical resonance. Membrane loudspeakers have very
little moving mass. In fact, the mass of the acoustic radiation
load is usually greater than that of the membrane. In order to
achieve a low enough fundamental resonance with such a
small mass requires high mechanical compliance. Hence, a
small enclosure is not an option. However, recent technologi-
cal developments, such as activated carbon,8,9 are moving in
the right direction. Alternatively, a membrane loudspeaker
can be used without an enclosure �i.e., as a dipole�, but this
requires a large diaphragm area in order to minimize rear-
wave cancellation at low frequencies.

The theory of constant-charge push-pull electrostatic
transducers with external polarizing supplies has long been
established,10 but there is little if any literature on the theory

of push-pull electret transducers, although the force conver-
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sion in single-ended electret transducer due to Sessler11 is
reproduced here by degenerating a push-pull model. Two
push-pull configurations are analyzed in this paper. The first
has a floating membrane, with just leakage paths between the
conductive membrane coatings and the outer electrodes, rep-
resented by high-value resistors. Under dynamic conditions,
these are ignored so that the configuration is treated as fully
floating. However, under static conditions, the membrane is
effectively grounded. Hence, the grounded membrane forms
the basis of the second configuration to be analyzed. The
forces and charges are also derived for a single-ended con-
figuration, as well as a method to evaluate the stored charge
density. An equivalent electrical circuit is developed which is
intended as a basis for simulation, since sound radiation from
membranes has already been analyzed in depth.12–15 Finally,
the condition for the static stability of a circular electret
transducer is determined and compared with that of Streng12

for a nonelectret transducer. The criteria for the stability of
capacitance microphones have also been studied numerically
by Warren,16 although no closed-form conditional equations
for specific geometries were presented.

II. PUSH-PULL ELECTRET TRANSDUCER
DESCRIPTION

A push-pull configuration with a semifloating membrane
is shown in Fig. 2. The two resistors R have very high values
or could just represent leakage paths. Under quiescent con-
ditions, with zero input signal, the membrane behaves as
though it is strapped to the outer electrodes and hence the
static charges assume the same values as in the case of a
grounded membrane. This is the most stable steady state con-
dition and also applies to very low frequencies, where half
the input voltage is effectively connected between the mem-
brane’s conductive coatings and each outer electrode. How-
ever, when driven by a signal voltage across the outer elec-
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FIG. 1. Assumed charge distribution in membrane.
trodes at medium to high frequencies, the membrane behaves
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as though its conductive coatings are isolated and fully float-
ing. This has a significant effect on the linearity of the mem-
brane displacement.

The configuration in Fig. 2 is similar to one previously
proposed by Atoji and Aoi,17 except that their configuration
has just one single charged membrane. Here, two are pro-
vided in order to maintain symmetry and to prevent the
membrane from undergoing a permanent static displacement
to one side, which would limit the maximum excursion. Ega

and Egb are the electric field strengths in each of the gaps
either side of the membrane, which actually comprises two
membranes, each attached to a central strength membrane.
Since the central strength membrane contains no charge, it
does not contribute to the electric field and is thus assumed
to be infinitesimally thin in the following force derivation.
Ema and Emb are the electric field strengths within the two
membranes, respectively, which are both assumed to contain
an evenly distributed negative charge per unit volume �or

FIG. 2. Push-pull configuration with semifloating, grounded, and fully-
floating membrane.
volume charge density� −�m. The inner electrode layers have
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surface charge densities �1a and �1b. The outer plates have
surface charge densities �0a and �0b. The relative permittivi-
ties of the membrane material and acoustic medium in the
gaps are �r and �r1, respectively. If the gaps contain air, then
�r1 can be assumed to be unity.

III. GAUSS’S LAW

Gauss’s law18 states that the difference in electrical flux
is equal to the net charge inside the volume. Applying this to
the cylinders �0a and �0b gives

�0�r1Ega = �0a, �1�

− �0�r1Egb = �0b. �2�

It is assumed that the size of the electrodes is very large in
comparison to the distance between them so that the field is
perpendicular to the electrodes and the sides of the cylinders
give zero flux. The tops of the cylinders are at constant dis-
tances from the outer electrodes, also the values of the elec-
tric fields are constant on the surfaces. Hence the fluxes are
trivial to compute. Outside of the system, the field is as-
sumed to be zero. The fluxes through the cylinders �2a and
�2b are a little more complicated to calculate, since the
membrane has a constant charge density:

�0�rEma�z� − �0�r1Ega = − �m�h − z� , �3�

�0�r1Egb − �0�rEmb�z� = − �m�h + z� . �4�

Substituting Eq. �1� into Eq. �3� yields

Ema�z� =
�0a − �1 − z/h��m

�0�r
�5�

and likewise substituting Eq. �2� into Eq. �4� yields

Emb�z� =
− �0b + �1 + z/h��m

�0�r
, �6�

where �m=�mh is the constant charge per unit area �or sur-
face charge density� of the membrane. Similarly, the fluxes
through the cylinders �1a and �1b can be calculated as fol-
lows:

�0�r1Egb − �0�rEma�z� = �1a + �1b − �m�z + h� , �7�

�0�rEmb�z� − �0�r1Ega = �1a + �1b + �m�z − h� . �8�

Substituting Eqs. �2� and �5� into Eq. �7� yields the following
relation between the surface charge densities:

�0a + �0b + �1a + �1b − 2�m = 0. �9�

Likewise, substituting Eqs. �1� and �6� into Eq. �8� yields the
same relation between the surface charge densities

�0a + �0b + �1a + �1b − 2�m = 0. �10�

Equations �1�, �2�, �5�, and �6� give the functional forms of
the electric fields, where Ega and Egb are constants and Ema

and Emb are linear functions of z. The unknowns here are the
surface charge densities �0a, �0b, �1a, and �1b. Their values
depend on how the electrodes have been connected to each

other.
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IV. KIRCHHOFF’S LOOP RULE

A. Floating membrane

Now, let a potential �voltage� ein be connected between
the outermost electrodes, as shown in Fig. 2. In the fully
floating state, the values of the resistors R are assumed to be
infinite. This represents dynamic conditions at medium to
high frequencies, where the impedance due to the interelec-
trode capacitance is much smaller than the impedance of the
resistors. Using the loop equation �the direction of the elec-
tric fields is from left to right, but the integration from right
to left� gives

− ein = − �
−h−d−�

−h

Egbdz − �
−h

0

Emb�z�dz − �
0

h

Ema�z�dz

− �
h

h+d−�

Egadz

=
��r�d + �� + �r1h��0b − ��r�d − �� + �r1h��0a

�0�r�r1
.

�11�

where the electric fields Egb, Emb, Ema, and Ega are given by
Eqs. �2�, �6�, �5�, and �1�, respectively.

B. Grounded membrane

At very low frequencies, the impedance of the resistors
R in Fig. 2 is much smaller than that of the interelectrode
capacitance. Hence, half of the input voltage is connected
across each resistor

−
ein

2
= − �

−h−d−�

−h

Egbdz − �
−h

0

Emb�z�dz

=
2��r�d + �� + �r1h��0b − �r1h�m

2�0�r�r1
. �12�

−
ein

2
= − �

0

h

Ema�z�dz − �
h

h+d−�

Egadz =

−
��r�d − �� + �r1h��0a − �r1h�m

2�0�r�r1
. �13�

where the electric fields Egb, Emb, Ema, and Ega are given by
Eqs. �2�, �6�, �5�, and �1� respectively.

V. SENSITIVITY AS A MICROPHONE

The voltage sensitivity is found by differentiating Eq.
�11� with respect to displacement �,

�ein = −
�0a + �0a

�0�r1
�� . �14�

For quiescent conditions ��=0, ein=0�, Eqs. �12� and �13�

give
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�0a = �0b =
�r1h�m

2��rd + �r1h�
. �15�

Hence, the linearized voltage sensitivity versus displacement
of a floating push-pull microphone is defined by

�ein = −
h�m

�0��rd + �r1h�
�� . �16�

The voltage sensitivity of a single-ended microphone is just
half this value.

VI. CALCULATION OF THE NET FORCE AS A
FUNCTION OF ELECTRODE CHARGES

The total energy W of the electric field can be calculated
by integrating the dot product of the flux D and electric field
E over the volume V �where V=2�d+h�S and S is the surface
area of the membrane� as follows:

W =
1

2
�

V

D̄ · ĒdV =
S

2
� D̄ · Ēdz , �17�

where

D̄ =�
�0�r1Ēgb, − h − d − � � z 	 − h

�0�rĒmb, − h � z � 0

�0�rĒma, 0 � z � h

�0�r1Ēga, h � z 	 h + d − � .
� �18�

Hence,

W =
S

2
�0��r1�

−h−d−�

−h

Egb
2 dz + �r�

−h

0

Emb
2 dz + �r�

0

h

Ema
2 dz

+ �r1�
h

h+d−�

Ega
2 dz	 , �19�

where the electric fields Egb, Emb, Ema, and Ega are given by
Eqs. �2�, �6�, �5�, and �1�, respectively. In this case, the en-
ergy density of the system will depend on �, and there will
be a force proportional to the charge of the membrane. The
net force F acting on the membrane is then given by

F =
�W

��
=

S��0b
2 − �0a

2 �
2�0�r1

. �20�

VII. CHARGE DENSITIES

A. Floating membrane

Solving Eqs. �9� and �11� simultaneously for the charge
densities �0a and �0b yields

�0a =
��r�d + �� + �r1h��2�m − ��1a + �1b�� + �0�r�r1ein

2��rd + �r1h�
,

�21�
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�0b =
��r�d − �� + �r1h��2�m − ��1a + �1b�� − �0�r�r1ein

2��rd + �r1h�
.

�22�

It can be seen that the charge on the outer electrodes varies
as the membrane moves from its central position, due to the
charge movement between them via the voltage source.
However, their sum is equal to the total charge density on the
membrane as follows:

�0a + �0b = 2�m − ��1a + �1b� �23�

and this remains constant. There may be similar charge
movements between the charges �1a and �1b on the conduc-
tive coatings of the membranes, but this does not matter
because it is the total membrane charge density that governs
Eqs. �21� and �22�.

B. Grounded membrane

Rearranging the loop rule of Eq. �13� yields an expres-
sions for the charge density �0a as follows:

�0a =
�r1�h�m + �0�rein�
2��r�d − �� + �r1h�

. �24�

Rearranging the loop rule of Eq. �12� yields an expres-
sions for the charge density �0b as follows:

�0b =
�r1�h�m − �0�rein�
2��r�d + �� + �r1h�

. �25�

In this case, the sum of the charges on the outer electrodes is
not independent of the membrane position.

C. Single ended

A single-ended transducer can be created by removing
all of the structure to the right of the central strength mem-
brane in Fig. 2 and replacing the resistor R on the right with
a short circuit. In this case, �0b=�1b=Egb=Emb=0 and Eq.
�7� becomes

− �0�rEma�z� = �1a − �mz . �26�

Substituting Eq. �5� in Eq. �26� yields

�0a + �1a − �m = 0. �27�

In the quiescent state, where ein=0 and �=0, Eq. �24� be-
comes

�0a =
�r1h�m

2��rd + �r1h�
. �28�

Referring to Fig. 3, it can be seen that as the gap width
d is increased to infinity, �0a tends to zero, but �1a becomes
asymptotically equal and opposite to the membrane charge
−�m. Hence, the membrane, together with its conductive
coating, forms a dipole which is its natural stable state. When
d=0, the charge is shared equally between the two electrodes

such that each holds half the value of the membrane charge.
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VIII. CALCULATION OF THE NET FORCE AS A
FUNCTION OF VOLTAGE

A. Floating membrane

The net force is calculated from Eqs. �20�–�22�. The
charges �1a and �1b are the quiescent ones, in which state the
membrane can be assumed to be grounded. They are taken
from Eq. �9� as follows:

�1a + �1b = 2�m − �0a − �0b, �29�

which, after inserting �0a and �0b from Eqs. �24� and �25�,
respectively, gives

�1a + �1b = 2�m −
�r1h�m

�rd + �r1h
, �30�

which is assumed to be constant under dynamic conditions.
After inserting Eqs. �21�, �22�, and �30� into Eq. �20�, the net
force F is then given by

F = −
�r�r1hS�m

2��rd + �r1h�2ein −
�r�r1h2S�m

2

2�0��rd + �r1h�3� . �31�

There are two components to the force, which is perfectly
linear. The first is due to the input voltage source and the
second is due to a “negative stiffness” or the static attraction
due to the membrane charge. Alternatively, Eq. �31� may be
written as

F = 
ein + �� , �32�

where 
 is the voltage-force conversion factor given by


 = � CE

CM + CG
	S�m

2d



�r1hS�m

2�rd
2 , d �

�r1h

�r
, �33�

where CE is the static capacitance between the outer elec-
trodes when the membrane is blocked, which is given by

CE =
CMCG

CM + CG
, �34�

where CM is the total capacitance of the two membranes

FIG. 3. Induced electrode charge at d=0 and d=.
given by
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CM =
�0�rS

2h
, �35�

and CG is the total capacitance of the two gaps given by

CG =
�0�r1S

2d
�36�

and � is the negative stiffness given by

� =
CE

2�CM + CG�2�S�m

d
	2



�r1h2S�m

2

2�0�r
2d3 , d �

�r1h

�r
.

�37�

The equivalent electrical circuit is shown in Fig. 4, which
can be used as part of a larger model including the dynamic
impedance of the membrane and surrounding acoustic sys-
tem. The force is plotted against displacement in Fig. 5 using
Eq. �31� with ein=0. It is interesting to compare this configu-
ration with that of a nonelectret transducer13 with an external
polarizing voltage EP, for which


 =
EPCED

d
=

�0SEP

d2 . �38�

Hence, the external polarizing voltage for the equivalent
nonelectret transducer is given by

EP =
S�m

2�CM + CG�



�mh

2�0�r
, d �

�r1h

�r
. �39�

Inserting �m from this equation into Eq. �31� indeed trans-
forms it into Eq. �3.13� of Borwick19 for the forces in a
non-electret transducer.

χ:1

CE

F

− CE

ein

FIG. 4. Equivalent electrical circuit.
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FIG. 5. Linearity of force vs displacement of push-pull transducer with
input shorted where S=�a2, where a=15 mm, d=200 �m, h=12 �m, �m

2
=14.1 mC /m , �0=8.85 pF /m, �r=12, and �r1=1.
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B. Grounded membrane

After inserting Eqs. �24� and �25� into Eq. �20�, the net
force F is then given by

F =
�r1S

8�0
�� �0�rein − h�m

�r�d + �� + �r1h
	2

− � �0�rein + h�m

�r�d − �� + �r1h
	2� .

�40�

Not surprisingly, this is the resultant force of two single-
ended transducers mechanically coupled back to back. While
the voltage to force conversion of this configuration is per-
fectly linear when �=0 �unlike a single-ended configuration�,
the force is nonlinear with displacement, as can be seen in
Fig. 5, and it increases asymptotically as the membrane ap-
proaches each electrode where it is singular. The small-signal
linearized expressions for the negative stiffness � and
voltage-force conversion factor 
 can be obtained as follows:

� = −  �F

��


�=0,ein=0
=

�r�r1h2S�m
2

2�0��rd + �r1h�3 , �41�


 =  �F

�ein


�=0,ein=0
=

�r�r1hS�m

2��rd + �r1h�2 , �42�

and these are the same as in Eq. �31� for the fully floating
configuration.

C. Single ended

It can be shown that the net force F is then given by

F =
�r1S

8�0
� 2�0�rein + h�m

�r�d + �� + �r1h
	2

=
�r1S

2��r�d + �� + �r1h�2�h2�m
2

4�0
+ �rh�mein + �0�r

2ein
2 	 .

�43�

This equation is the same as that due to Sessler,11 except that
�m was multiplied by 2 in Sessler’s model where a concen-
trated charge layer was assumed to exist at the interface be-
tween the membrane and the gap. It can be seen that there
are three terms in the bracket. The first is the static force with
zero input voltage. The other two are voltage dependent
terms, the first of which is linear and the second, which de-
pends upon the square of the input voltage, is nonlinear. It
can also be seen that the force is nonlinear with displacement
�. Ignoring second order terms, the following linearized
small-signal equation can be written as

F = 
ein + �� , �44�

where 
 is the voltage to force conversion factor given by


 = � CE

CM + CG
	S�m

2d



�r1hS�m

2�rd
2 , d �

�r1h

�r
�45�

and CE is the static capacitance between the outer electrodes

when the membrane is blocked, which is given by
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CE =
CMCG

CM + CG
, �46�

where CM is the capacitance of the membrane given by

CM =
�0�rS

h
, �47�

and CG is the capacitance of the gap given by

CG =
�0�r1S

d
, �48�

and � is the negative stiffness. A small-signal linear approxi-
mation for � is given by

� =
CE

4�CM + CG�2�S�m

d
	2



�r1h2S�m

2

4�0�r
2d3 , d �

�r1h

�r
.

�49�

The equivalent electrical circuit is the same as that shown in
Fig. 4 for a push-pull transducer. The force versus voltage
characteristic of the blocked membrane is plotted in Fig. 6
using Eq. �43� with �=0. Also shown is the ideal linear case
with the ein

2 term omitted. The force versus displacement
characteristic of the membrane with the electrodes shorted is
plotted in Fig. 7 using Eq. �43� with ein=0. Also shown is the
ideal linear case using Eq. �49� added to the static force from
Eq. �43� with ein=�=0.
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FIG. 6. Linearity of force vs voltage of single-ended transducer with mem-
brane blocked where S=�a2, where a=15 mm, d=200 �m, h=12 �m,
�m=14.1 mC /m2, �0=8.85 pF /m, �r=12, and �r1=1.
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FIG. 7. Linearity of force vs displacement of single-ended transducer with

input shorted and same parameters as in Fig. 6
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D. Calculation of the net charge

In the case of a single-ended transducer, one can calcu-
late the net stored charge by applying a reverse voltage such
that the membrane displacement is reduced and then increas-
ing it further until the displacement is about to increase
again. Let the turning point occur at voltage e0. Then differ-
entiating Eq. �43� with respect to ein gives

 dF

dein


ein=e0

=
�r1S��rh�m + 2�0�r

2ein�
2��r�d + �� + �r1h�2 = 0, �50�

so that the surface charge density is given by

�m = −
2�0�re0

h
. �51�

By inserting this expression for �m in Eq. �43�, it can be
shown that F=0 when ein=e0, so there should be zero dis-
placement at this point.

IX. STABILITY OF A CIRCULAR MEMBRANE

For a circular membrane, the following static wave
equation can be written, ignoring inertia and external load-
ing,

T� �2

�w2 +
1

w

�

�w
	��w� −

�

�a2��w� = 0, ��a� = 0, �52�

where � is the membrane deflection, w is the radial ordinate,
T is the tension, and a is the radius. The solution is given by

��w� = �0, a��/��a2T� � �n

CJ0��nw/a� , a��/��a2T� = �n,
� �53�

where �n is the nth zero of J0, C is an arbitrary constant, and
the square-root term is the static wave number. Hence, for
stability

T �
�

��1
2 , �54�

where �1=2.4048. Using Eq. �37� for �, where the area is
given by S=�a2, and assuming d��r1h /�r give

T �
a2�r1h2�m

2

2�1
2�0�r

2d3 , d �
�r1h

�r
, �55�

for a push-pull transducer. In the case of a single-ended
transducer, this value of tension is halved. Inserting �m from
Eq. �39� into Eq. �55� gives

T �
2a2�0�r1EP

2

�1
2d3 , �56�

which is Streng’s equation12 for the stability of a nonelectret
push-pull electrostatic transducer. It can be seen that as the
charge density is increased, the tension also has to be in-
creased in order to maintain stability. However, the funda-
mental resonant frequency of the membrane has to be set low
enough to give the desired bandwidth and this is determined
by the system stiffness. The system stiffness is that due to the
membrane �which is proportional to its tension� less the

negative stiffness due to the electrostatic force. As the charge
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density is increased, the difference between these two forces
becomes an ever smaller proportion of the membrane stiff-
ness. Hence, a small relaxation in its tension, which can eas-
ily occur due to age or environmental conditions, can lead to
the membrane becoming attached to either of the electrodes.
Some solutions have been proposed,20 which involve in-
creasing the stiffness of the membrane by adding “springs”
between it and the electrodes. Unfortunately, these add non-
linearity to an otherwise linear transducer. Inevitably, they
restrict the maximum displacement and hence also the maxi-
mum sound pressure. On the other hand, they can enable
new forms such as flexible loudspeakers.21

X. DISCUSSION OF THE RESULTS

In all of the configurations considered, there is a near
field effect whereby for very small electrode separations �i.e.,
d	h�r1 /�r�, the force is relatively independent of the sepa-
ration. However, such a small separation is not such a prac-
tical proposition for a loudspeaker since the membrane
would not be able to move far enough to produce a reason-
able sound pressure. At larger distances, these expressions
reduce to simpler far-field expressions in which the driving
force is proportional to the inverse square of the separation
and the negative stiffness is proportional to the inverse cube
of the separation.

The floating push-pull electret transducer is utterly linear
with both input voltage and displacement, as can be seen
from Fig. 5, because the charges are kept constant by virtue
of the floating membrane. However, it should be noted that
under static conditions, as well as at frequencies below f
=1 / �2�RCE�, this configuration behaves as though the mem-
brane is grounded due to charge leakage. Even if there are no
physical resistors R connected to the conductive coatings, as
shown in Fig. 2, those resistors will be replaced by charge
leakage paths so that the static deflection is still nonlinear, as
also shown in Fig. 5.

Interestingly, although the driving force of the grounded
membrane configuration is nonlinear with displacement, it is
linear with input voltage when the membrane is locked in its
central resting position. This is due to the fact that the
charges induced in the membrane’s conductive coatings vary
with the position of the membrane �which is also true for the
single-ended configuration�. Not surprisingly, it can be seen
from Figs. 6 and 7 that the single-ended configuration yields
a driving force that is neither linear with input voltage nor
displacement.

XI. CONCLUSIONS

The force-versus-voltage and force-versus-displacement
sensitivities of the electret transducer have been derived, as-
suming the charge to be evenly distributed throughout the
membrane dielectric. Using the same derivation method, it
can be shown that this is equivalent to having a concentrated
charge layer in the middle. Thus, any symmetrical charge
distribution can be represented by this model. Furthermore,
this concentrated charge layer can be regarded as one plate of
a capacitor, with the conductive coating forming the other.

Hence, the external polarizing voltage for an equivalent non-
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electret transducer is the same as that across this notional
capacitor and is related to the charge by Eq. �39�, which is
essentially the total stored charge divided by the capacitance
of the half membrane. The electromechanical force conver-
sion factor has also been shown on an equivalent circuit,
together with the interelectrode capacitance and negative ca-
pacitance, as a basis for simulation.
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