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Analytical equations describing radiation characteristics of an oscillating ring in a circular finite
baffle are derived, including the limiting case of a dipole point source at the center. An oscillating
sphere would represent the ideal dipole source, having a constant directivity pattern at all
frequencies, but would be inconvenient to realize especially in portable devices. It is found that a
planar piston with uniform surface velocity but variable phase arranged to emulate the sphere does
not have such a smooth on-axis response as the sphere. Instead a planar piston with the same phase
distribution but uniform pressure represents an ideal planar source with a smooth on-axis response
and near constant directivity. The surface velocity is plotted and it is then shown that a similar
response can be achieved using a finite number of concentric rings based on this velocity
distribution. © 2010 Acoustical Society of America. �DOI: 10.1121/1.3493446�
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I. INTRODUCTION

In recent years, interest in finding analytical solutions to
the problems of axisymmetric radiators in an infinite baffle
has continued, whether the surface velocity distribution be
uniform1 or non-uniform.2–4 Cases where the surface veloc-
ity is unknown are particularly challenging and have been
approached in a number of different ways, which are inter-
esting to compare.2,4,5 The same kinds of approaches also
have to be applied to axisymmetric radiators in free space
where the surface pressure distributions are unknown. For
example, Aarts et al.4 use a trial function based on Zernike6,7

polynomials to good effect in order to solve the reverse prob-
lem for a resilient radiator in an infinite baffle: By measuring
the nearfield axial pressure, the surface velocity distribution
can be evaluated.

In the first part of this paper, a derivation is presented for
the sound field of a ring source in a circular baffle or, by
means of superposition of fields, any number of concentric
ring sources. By driving these ring sources with signals of
differing amplitudes and phases, a highly-focused or widely-
dispersed sound field can be synthesized. The latter has
found applications in loudspeakers because producing a spa-
tially omnidirectional source at all frequencies would nor-
mally require a very small source size, but producing enough
volume velocity from such a source is always not possible.8

Hence an attractive solution is to use an extended source
with annular rings, which can be combined to produce omni-
directional far field pattern. However, traditional approaches8

assume the need to attenuate the output of the outer rings at
high frequencies using lossy delay lines in order to minimize
edge diffraction effects, but what is really desired is to have
constant radiated power with a uniform cosine directivity

a�Author to whom correspondence should be addressed. Electronic mail:

tim.mellow@nokia.com

J. Acoust. Soc. Am. 128 �5�, November 2010 0001-4966/2010/128�5
pattern. Here this is shown to best achieved by keeping the
surface pressure distribution uniform and adjusting the
phase, which produces virtually no diffraction effects.

In the next part, the relative velocity amplitudes and
phases of the rings are optimized. The ring patterns could be
carefully driven electrostatic, piezoelectric or electret
speaker designs.9

Although transducer arrays are traditionally evaluated in
an infinite baffle for computational simplicity, the free space
case is often closer to reality and enables a truer picture of
the low frequency limit to be ascertained.

In this paper, the Bouwkamp10-Streng11 trial function is
used, which is based on the solution to the Helmholtz wave
equation in oblate spheroidal coordinates. It is the simplest
function and has been found by the authors to converge just
as well as any other. Although the power series matching
method has been found to be the most efficient for unbaffled
radiators,12,13 the least-mean-squares method, as used here,
appears to save processing power for a ring or piston in a
finite baffle, because the integrals are all solved analytically,
unlike previously where numerical integration had been
performed.14,15

II. RING AND POINT SOURCE IN A CIRCULAR
BAFFLE

A. Boundary conditions

A ring of inner radius a1 and outer radius a2 shown in
Fig. 1 is mounted in a finite circular baffle of radius b in the
xy plane with its center at the origin and oscillates in the z
direction with a harmonically time dependent velocity ũ0,
thus radiating sound from both sides into a homogeneous
loss-free medium. The dipole source elements shown in Fig.
1 form the disk source. The area of each surface element is
given by �S0=w0�w0��0. The pressure field on one side of
the xy plane is the symmetrical “negative” of that on the

other, so that
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p̃�w,z� = − p̃�w,− z� . �1�

Consequently, there is a Dirichlet boundary condition in the
plane of the disk where these equal and opposite fields meet,

p̃�w,0� = 0, b � w � � , �2�

which is satisfied automatically. There is also a pressure-
gradient boundary condition which is dependent upon the
velocity distribution over the disk, ring, or baffle. Streng11

showed that the front and rear surface pressure distributions
p+�w0� and p̃−�w0� respectively for any flat axially-symmetric
unbaffled source �or sink�, based upon Bouwkamp’s
solution10 to the free space wave equation in oblate spheroi-
dal coordinates, could be written as

p+�w0� = − p̃−�w0� = kb�cũ0
a2

2

b2 �
n=0

�

An�n +
3

2
��1 −

w0
2

b2 �n+1/2

,

0 � w0 � b , �3�

where An are the as yet unknown power series coefficient
that will be calculated by means of a set of simultaneous
equations in matrix form, k is the wave number given by k
=� /c=2� /	, � is the angular frequency of excitation, � is
the density of the surrounding medium, c is the speed of
sound in that medium, and 	 is the wavelength. The tilde
denotes a steady-state harmonically-varying quantity, other-
wise denoted by the factor ei�t. In this paper, i represents the
positive square root of 
1 and is thus equivalent to the
imaginary operator j used in circuit theory. Equation �3� is
the same as that previously used by the authors12 with the
exception that in its present form it has been multiplied by
a2

2 /b2 in order to facilitate the solution in the limiting case
of a point source. This also simplifies subsequent expressions
for the radiation impedance and far-field pressure.

B. Formulation of the coupled equation

Although similar derivations are shown in the corre-
sponding sections of previous papers,12,13 full details are

a2

x

y

z

δw0

w0δφ0
δφ0

w

φ0

w0

0

r
r0

θ

P

b

a1

FIG. 1. Geometry of ring in finite baffle. The point of observation P is
located at a distance r and angle � with respect to the origin at the center of
the ring.
given here for the reader’s convenience. The near-field pres-
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sure distribution is given by the following dipole boundary
integral taking into account the surface pressure on both
sides:16

p̃�w,z� = �
0

2� �
0

b

�p̃+�w0� − p̃−�w0��

�
�

�z0
g�w,z	w0,z0�	z0=0+w0dw0d�0, �4�

where the Green’s function in axisymmetric cylindrical co-
ordinates is given by

g�w,z	w0,z0� =
− i

2�
�

0

�

J0��w�J0��w0�
�


e−i	z−z0	d� , �5�

where

 = 
 �k2 − �2, 0 � � � k ,

− i��2 − k2, � � k .
� �6�

In this form Eq. �4� is known as the dipole King integral.
Inserting Eqs. �3� and �5� into Eq. �4� and integrating over
the surface of the disk and baffle gives

p̃�w,z� = − 2ka2
2�cũ0�

n=0

�

An��n +
5

2
�

��
0

� � 2

�b
�n+1/2

J0��w�Jn+3/2��b�e−i	z	d� , �7�

where the following Sonine’s integral17 solution has been
used:

�
0

b �1 −
w0

2

b2 �n+1/2

J0��w0�w0dw0

=
b2

2
��n +

3

2
�� 2

�b
�n+3/2

Jn+3/2��b� . �8�

At the surface of the disk, there is the coupling condition

�

�z
p̃�w,z�	z=0+ = − ik�cũ0��w� , �9�

where ��w� is a dimensionless function of the surface veloc-
ity distribution. In this paper different expressions for ��w�
will be used when considering a ring or point source in a
circular baffle. This leads to the following coupled equation:

�
n=0

�

AnIn�w� = − ��w� , �10�

which is to be solved for the power series coefficients An.
The integral In�w� can be split into two parts,

In�w� = InR�w� − iInI�w� , �11�
where the real part is given by
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InR�w� = a2
2��n +

5

2
��

0

k � 2

�b
�n+1/2

Jn+3/2��b�J0��w�

��k2 − �2d� , �12�

and the imaginary part is given by

InI�w� = a2
2��n +

5

2
��

k

� � 2

�b
�n+1/2

Jn+3/2��b�

�J0��w���2 − k2d� . �13�

The solutions to these integrals can be shown12,18 to be given
by

InR�w� = ��
a2

2

b2 �
m=0

�

�
r=0

� �− 1�m+r��n +
5

2
���m + r + 1�

�m!�2r!��r + n +
5

2
���m + r +

5

2
�

�� kb

2
�2�m+r�+3�w

b
�2m

, �14�

InI�w� = ��
a2

2

b2 �
m=0

�

�
r=0

� �− 1�m+r+n��n +
5

2
���m + r − n −

1

2
�

�m!�2r!��r − n −
1

2
���m + r − n + 1�

�� kb

2
�2�m+r−n��w

b
�2m

. �15�

C. Solution of the power series coefficients for a ring
in a circular baffle

In the case of a disk or membrane in free space, the
power-series matching method12,13 gives best results, but for
disk or finite ring in a circular baffle, a more efficient method
is to employ the following least-mean-squares �LMS� algo-
rithm. From Eq. �10�, let an error function be defined by

E�An� = �
0

b �
n=0

�

AnIn�w� + ��w�2

wdw , �16�

where

��w� = �0, 0 � w � a1,

1, a1 � w � a2,

0, a2 � w � b .
� �17�

In order to find the values of An that minimize the error, the
derivative of E is taken with respect to An and the result
equated to zero,

�

�An
E�An� = 2�

0

b

Im
� �w���

n=0

�

AnIn�w� + ��w��wdw = 0,

�18�

which after truncating the infinite series limit to order N,

yields the following set of N+1 simultaneous equations
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�
n=0

N

An�
0

b

Im
� �w�In�w�wdw = − �

a1

a2

Im
� �w�wdw, m

= 0,1, ¯ ,N , �19�

where

Im
� �w� =

a2
2

b2 �
p=0

P

�mSp�kb� + i mBp�kb���w

b
�2p

, �20�

In�w� =
a2

2

b2 �
q=0

Q

�nSq�kb� + i nBq�kb���w

b
�2q

. �21�

The dipole cylindrical wave functions nBm and nSm are
named the Bouwkamp10 and Streng18 functions respectively
in honor of their pioneering work and are defined by

nBm�kb� = ���
r=0

R �− 1�m+r��n +
5

2
���m + r + 1�

�m!�2r!��r + n +
5

2
���m + r +

5

2
�

�� kb

2
�2�m+r�+3

, �22�

nSm�kb� = ���
r=0

R �− 1�m+r+n��n +
5

2
���m + r − n −

1

2
�

�m!�2r!��r − n −
1

2
���m + r − n + 1�

�� kb

2
�2�m+r−n�

. �23�

Integrating over w yields the following N�N matrix equa-
tion:

M · a = b , �24�

where the matrix M and vectors a and b are given by

M�m + 1,n + 1� = �
p=0

P

�
q=0

Q
�mBp�kb� − j mSp�kb��

p + q + 1
�nBq�kb�

− j nSq�kb��,
m = 0,1, ¯ ,N ,

n = 0,1, ¯ ,N ,
� �25�

b�m + 1� = − �
p=0

P
�mBp�kb� − j mSp�kb��

p + 1
��a2

b
�2p

− �a1

b
�2p�a1

a2
�2�, m = 0,1, ¯ ,N , �26�

a�n + 1� = An, n = 0,1, ¯ ,N , �27�

and the infinite power series limits have been truncated. In
the computations, it found to be sufficient to let N=10

+2ka and P=Q=R=2N.
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D. Solution of the power series coefficients for a
point source in a circular baffle

The surface velocity distribution of an infinitesimally
narrow ring source of radius a1 in a circular baffle is given
by

��w� = 1
2a1��w − a1� , �28�

where � is the Dirac delta function. Inserting this into Eq.
�18� and truncating the infinite series limit to order N, while
letting a2=a1, yields the following set of N+1 simultaneous
equations:

�
n=0

N

An�
0

b

Im�w�In�w�wdw

= −
a1

2
�

0

b

��w − a1�Im�w�wdw, m = 0,1, ¯ ,N ,

�29�

where Im�w� and In�w� are given by Eqs. �20� and �21� re-
spectively. Integrating over w and using the property of the
Dirac delta function yields the same matrix equations as Eqs.
�24�–�27� except that

b�m + 1� = − �
p=0

P

�mBp�kb� − i mSp�kb���a1

b
�2p

. �30�

In the limiting case of a point source at the center of a cir-
cular baffle, let a1→0 so that

b�m + 1� = − �mB0�kb� + i mS0�kb�� . �31�

E. Far-field pressure

The far-field pressure distribution is given by the dipole
boundary integral of Eq. �4�, but using the far-field Green’s
function in spherical-cylindrical coordinates:

p̃�r,�� = �
0

2� �
0

b

�p̃+�w0� − p̃−�w0��

�
�

�z0
g�r,�,�	w0,�0,z0�	 z0=0+

�=�/2
w0dw0d�0, �32�

where the far-field Green’s function is given by16

g�r,�,�	w0,�0,z0� =
1

4�r
e−ik�r−w0 sin � cos��−�0�−z0 cos ��.

�33�

Due to axial symmetry, there is no � dependency so that any
value can be chosen and a value of � /2 turns out to be the
most convenient for solving the angular integral. Inserting
Eqs. �3� and �33� into Eq. �32� and integrating over the sur-
face, using Eq. �8� and17

1

2�
�

0

2�

eit sin �0d�0 = J0�t� �34�

�with t=kw0 sin �, �=k sin �, and letting �=� /2 so that

cos��−�0�=sin �0 in Eq. �34��, gives
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p̃�r,�� = ika2
2�cũ0

e−ikr

2r
D��� , �35�

where the directivity function D��� is given by

D��� = kb cos ��
n=0

N

An��n +
5

2
�

�� 2

kb sin �
�n+3/2

Jn+3/2�kb sin �� . �36�

The on-axis pressure is evaluated by setting �=0 in Eq. �33�
before inserting it in Eq. �32� and integrating over the surface
to give

D�0� = kb�
n=0

N

An, �37�

so that the on-axis response can be written as

p̃�r,0� = − i�0fŨ0
e−ikr

r
kb�

n=0

N

An, �38�

where Ũ0=�a2
2ũ0 is the total volume velocity in the case of

a1=0. The on-axis response 20 log10�D�0�� of a point source
in a circular baffle of radius b is plotted in Fig. 2. In the same
figure there is also plotted the response in free space of two
point sources of opposite phase on the same axis with a
separation of b, which is given by 20 log10	eikb/2−e−ikb/2	 or
20 log10	2i sin kb /2	. Using the superposition of fields, the
on-axis response of a monopole point source in a closed
circular baffle is obtained by combining the dipole point
source in an open circular baffle with a monopole point
source in free space to obtain

D�0� =
1

2
�1 + kb�

n=0

N

An� . �39�

The on-axis response 20 log10�D�0�� is plotted in Fig. 3. In
the same figure there is also plotted the response in free
space of two point sources of opposite phase, as before, but
with a monopole source half way between them, which is
given by 20 log10	�1+eikb/2−e−ikb/2� /2	 or 20 log10	�1
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FIG. 2. Normalized far-field on-axis response of a dipole point source in a
circular open baffle with constant volume acceleration.
+2i sin kb� /2	.
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F. Radiation impedance of a ring in a circular baffle

The total radiation force is found by integrating the pres-
sure from Eq. �3� over the surface of the ring on both sides to
give

F̃ = − �
0

2� �
a1

a2

�p̃+�w0� − p̃−�w0��w0dw0d� . �40�

The specific radiation impedance Zs is then given by Zs

= F̃ / Ũ0=Rs+ jXs, where Ũ0=��a2
2−a1

2�ũ0 is the total volume
velocity. The specific radiation resistance Rs per side is given
by

Rs = kb�c
a2

2

a2
2 − a1

2R��
n=0

N

An
�1 −
a1

2

b2�n+3/2

− �1 −
a2

2

b2�n+3/2�� , �41�

and the specific radiation reactance Xs per side is given by

Xs = kb�c
a2

2

a2
2 − a1

2I��
n=0

N

An
�1 −
a1

2

b2�n+3/2

− �1 −
a2

2

b2�n+3/2�� .

�42�

III. VIRTUAL OSCILLATING SPHERE

An ideal dipole sound source is the oscillating sphere
which has a perfectly smooth monotonic far-field pressure
response and a constant dipole directivity pattern. Three
ways to emulate this kind of sound source using a flat circu-
lar radiator are described in this section. In Section III A this
is done using a driving velocity distribution of uniform mag-
nitude. In Section III B, the uniform velocity distribution is
exchanged for a uniform pressure distribution. In each case a
continuously variable delay is applied to the driving velocity
or pressure, where the delay path length is b−�b2−w0

2 as can
be seen from Fig. 4. In Section III C a velocity source is
used, but the velocity magnitude and phase distribution is
discretized using separate rings, where the velocity at the
midpoint along the radius of each ring is matched to that of
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circular baffle of radius b

Combined monopole
& dipole point sources
in free space with
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FIG. 3. Normalized far-field on-axis response of a monopole point source in
a circular closed baffle with constant volume acceleration.
the corresponding point on pressure source of Section III B.
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A. Virtual oscillating sphere using a planar source
with uniform surface velocity but variable
delay

A surface velocity distribution which has an increasing
delay toward the rim in order to simulate an oscillating
sphere of radius b is given by

��w� = eik�b−�b2−w2� = eikb�1−�1−w2/b2�, �43�

where the delay path length at the rim is the radius b of the
sphere. Inserting this into Eq. �18� and truncating the infinite
series limit to order N yields the following set of N+1 si-
multaneous equations:

�
n=0

N

An�
0

b

I
m
*�w�In�w�wdw

= − �
0

b

eikb�1−�1−w2/b2�I
m
*�w�wdw, m = 0,1, ¯ ,N ,

�44�

where Im�w� and In�w� are given by Eqs. �20� and �21� re-
spectively. Integrating over w yields the same matrix equa-
tions as Eqs. �24�–�27� except that

b�m + 1� = − �
p=0

P

�mSp�kb� − i mBp�kb��
2

b2p+2

��
0

b

eikb�1−�1−w2/b2�w2p+1dw . �45�

The on-axis response and directivity patterns plotted from
Eqs. �37� and �36� are shown in Fig. 5 and Fig. 6 respec-
tively. For comparison, the on-axis response of an oscillating
sphere is also included using16 D�0�=2ikb / �2−k2b2+2ikb�.

B. Virtual oscillating sphere using a planar source
with uniform surface pressure but variable delay

If the loudspeaker is a pressure transducer, as are typi-
cally electrostatic types, the surface pressure can be approxi-
mated by a uniform driving pressure p̃0 so that applying the

b

w0b

z
0

w

FIG. 4. Sketch showing geometry of hemispherical delay path length.
delay of Eq. �43� gives
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p̃+�w0� = − p̃−�w0� =
p̃0

2
eikb�1−�1−w0

2/b2�, 0 � w0 � b .

�46�

Inserting Eqs. �46� and �33� into Eq. �32� and integrating
over the surface, using Eq. �34� yields

p̃�r,�� = − ibp̃0
e−ikr

4r
D��� , �47�

where after substituting w0=bs the directivity factor is given
by

Virtual oscillating sphere using circular

planar velocity source of radius b

Actual oscillating

sphere of radius b

FIG. 5. Normalized far-field on-axis response of virtual oscillating sphere
using a planar source with uniform surface velocity magnitude but variable
delay. Plot is of 20 log10�	D�0�	� where D�0� is given by Eq. �37�.
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−20

−20
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FIG. 6. Normalized far-field directivity pattern of virtual oscillating sphere
using a planar source with uniform surface velocity magnitude but variable
delay. Plot is of 20 log10�	D���	 / 	D�0�	� where D��� is given by Eq. �36� and

D�0� is given by Eq. �37�.
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D��� = 2kb cos ��
0

1

eikb�1−�1−s2�J0�kbs sin ��sds . �48�

For the on-axis response, a closed-form solution is given by

D�0� =
2

kb
�1 − eikb + ikb� . �49�

The on-axis response and directivity patterns plotted from
Eqs. �49� and �48� are shown in Fig. 7 and Fig. 8 respec-
tively. The nearfield pressure is given by Eq. �4� using the
Green’s function of Eq. �5� and surface pressure distribution

Virtual oscillating sphere using circular

planar pressure source of radius b

Actual oscillating

sphere of radius b

FIG. 7. Normalized far-field on-axis response of virtual oscillating sphere
using a planar source with uniform surface pressure magnitude but variable
delay. The same frequency response shape can also be obtained from a
planar source in an infinite baffle with uniform surface velocity magnitude
but variable delay, where the velocity is constant at all frequencies. Plot is of
20 log10�	D�0�	� where D�0� is given by Eq. �49�.
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FIG. 8. Normalized far-field directivity pattern of virtual oscillating sphere
using a planar source with uniform surface pressure magnitude but variable
delay. Plot is of 20 log10�	D���	 / 	D�0�	� where D��� is given by Eq. �48� and

D�0� is given by Eq. �49�.
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of Eq. �46�. The surface velocity of the delayed pressure
source is calculated by inserting the delay from Eq. �46� into
Eq. �81� from Ref. 19 for the near pressure field resilient disk
in free space. Letting r1=�z2+w0

2, ra=�z2+b2, and cos �
=z /r1 gives

p̃�w,z� =
ikp̃0

��
�
n=0

�

�− 1�n�4n + 3�
��n +

3

2
�

��p + 1�

�
j2n+1�kw�

w
�

0

b

h2n+1
�2� �k�z2 + w0

2�

�P2n+1� z

�z2 + w0
2�w0dw0. �50�

From this the surface velocity is given by

ũ0�w� =
1

− ik�c

�

�z
p̃�w,z�	z→0, 0 � w � b . �51�

The normalized magnitude and phase of the surface velocity
is plotted in Fig. 9 and Fig. 10 respectively.

kb = 1
kb = 3
kb = 5
kb = 10

FIG. 9. Normalized surface velocity magnitude of the planar source with
uniform surface pressure magnitude but variable delay. Plot is of
2�c	ũ0�w�	 / 	p̃0	, where ũ0�w� is given by Eq. �51�.

kb = 1
kb = 3
kb = 5
kb = 10

FIG. 10. Normalized surface velocity phase of the planar source with uni-
form surface pressure magnitude but variable delay. Plot is of �ũ0�w�,

˜
where u0�w� is given by Eq. �51�.

J. Acoust. Soc. Am., Vol. 128, No. 5, November 2010 T. Mellow
C. Virtual oscillating sphere using a planar array of
concentric ring radiators

As an application for the solutions it is shown here how
an array of concentric radiators can be optimized to provide
an even sound field. First assume that the radiator in question
is a plane with a center element and a number of surrounding
rings as shown in Fig. 11. The standard way to solve the
directivity problem in plane radiators would be to make the
radiating surface long in vertical and narrow in horizontal
direction. However, this will not help if the device with the
loudspeaker is portable, and one cannot predict before hand
how the user is going to hold it. Thus, a circular solution is
better—in particular as an upwards radiating circular speaker
element is not directional at all in the horizontal direction.

The far field representation of the sound is the summa-
tion over j of each element from Eqs. �35� and �36�,

p̃�r,�� = − ikaj
2�c

e−ikr

2r �
j=1

J

ũ�aj�Dj��� , �52�

where the directivity functions D��� are given by even func-
tions

Dj��� = kb cos ��
n=0

N

Anj��n +
5

2
�

�� 2

kb sin �
�n+3/2

Jn+3/2�kb sin �� , �53�

and the complex velocity for each ring ũ0�aj� is obtained
from Eq. �51�. The on-axis response then becomes

Dj�0� = kb�
n=0

N

Anj . �54�

IV. DISCUSSION

The dipole point source in a circular baffle is the limit-
ing case of a disk in a circular baffle12 where the radius of

a1 a2 aj aJ = b

FIG. 11. Geometry of planar concentric ring sources. Plot is of
� arg�ũ0�w�� /180 where ũ0�w� is given by Eq. �51�.
the disk is infinitesimally small. Unlike a circular disk of
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finite radius, the peaks in the response of the baffled dipole
point source �see Fig. 2� show no sign of diminishing with
increasing frequency. In the case of a circular disk12 where
the baffle radius is eight times that of the disk, the shape of
the first maximum is virtually identical to that of the baffled
dipole point source. However, the remaining maxima are
progressively diminished due to the fact that the disk be-
comes more directional at high frequencies.

It is interesting to compare the on-axis response of the
baffled dipole point source with that of a dipole point source
in free space �see Fig. 2�, which is a classic comb filter.
Although their minima are perfectly aligned, the maxima of
the baffled point source are shifted slightly and a couple of
dBs higher due to reflections at the rim of the baffle giving
rise to radial resonance modes. The low frequency radiation
from the baffled point source is weaker than that of the di-
pole in free space due to a stronger anti-phase rear-wave
emerging at the rim which has spread out hemispherically
from the center. This is in contrast to the dipole in free space
where the anti-phase radiation from the furthest point source
spreads out spherically.

Similar differences as those just described can be seen
between the two monopole responses shown in Fig. 3. The
overall shift of 6 dB in the output between low frequencies
and high frequencies can be explained by the fact that when
the wavelength is much greater than the radius of the baffle,
the monopole point source effectively radiates into whole
space, but when the wavelength is short, the source behaves
more or less as though the baffle is infinite and thus radiates
mainly into half space.

Because a rigid oscillating sphere is an axial velocity
source, as opposed to a resilient one which would be a pres-
sure source, one might expect a planar velocity source with a
uniform velocity magnitude but the phase delay path length
of that shown in Fig. 4 to provide a good approximation.
However, although the directivity pattern of Fig. 6 reason-
ably good, the on-axis response of Fig. 5 is rather irregular at
high frequencies. Not surprisingly, it behaves like an oscil-
lating disk in free space at low frequencies, which has a
weaker output than an oscillating sphere due to the shorter
path length between the rear and front radiating surfaces.
Better results are obtained using a pressure source which
gives the smooth on-axis response of Fig. 7 and an almost
constant directivity pattern that is free of ripples or side
lobes, as shown in Fig. 8, which is perhaps slightly surpris-
ing because, unlike the oscillating sphere, the surface veloc-
ity magnitude shown in Fig. 9 increases toward the rim. This
kind of result should be achievable using an electrostatic or
electret transducer for high quality reproduction of the elec-
trical signal where the stator electrodes are divided into con-
centric rings as shown in Fig. 11. An electrostatic or electret
loudspeaker is virtually a pure pressure source except that
the rim of the membrane is normally clamped, whereas the
idealized model used here is freely suspended which pro-
duces a singularity at the rim. If a velocity transducer is used,
such as an array of electrodynamic loudspeakers, then best
results are obtained when velocity distribution is arranged to
be the same as that of a pressure transducer. The directivity

response of nine concentric rings with a central disk is
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shown in Fig. 12. Discretization aside, this should be consid-
ered as an approximation to the directivity pattern of the
pressure source shown Fig. 8. Because the concentric rings
are velocity driven, they have different mutual impedances to
those of an array of pressure driven rings. If only one ring is
excited in a pressure driven array, it is unaffected by the
remaining rings, which are acoustically transparent, whereas
in a velocity driven array, the remaining rings are opaque. To
illustrate this, the point source in a circular baffle, for which
the on-axis response is shown in Fig. 2, may be considered
as the central element of the array. Clearly a smoother re-
sponse is obtained when the baffle is transparent and the
point source is located in free space. It is worth mentioning
that the on-axis response of Fig. 7 is also obtained from a
planar source in an infinite baffle with a uniform velocity
magnitude but the phase delay path length of that shown in
Fig. 4, where the driving velocity is constant at all frequen-
cies.

V. CONCLUSION

A relatively straightforward analytical solution for the
pressure field of annular dipole rings within a finite baffle
has been provided. In practice, this is important in future
portable devices, where one cannot easily deploy multiple
speaker configurations, nor close the back side to a large
back cavity. However, large displays will give bigger, al-
though thin, areas to work with which are suitable for dipole
electrostatic or electret speakers.9,20

The challenge has been how to control optimally the

0 dB

−20

−20

−20

0 dB

0 dB

30°

60°

0°

90°

kb = 1

kb = 3

kb = 10

kb = 5

−30 −10

FIG. 12. Normalized far-field directivity pattern with optimized velocities
for ten planar rings. Plot is of 20 log10�	� j=1

10 Dj���	 / 	� j=1
10 Dj�0�	� where Dj���

is given by Eq. �53� and Dj�0� is given by Eq. �54�.
directivity of a large planar source. Here the analytical solu-
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tion has been used to specify an axially symmetric segmen-
tation of the planar radiator, with each ring having its own
frequency dependent velocity magnitude and phase, which
gives a good radiation pattern across a wide range of fre-
quencies as seen in Fig. 12.

The radiation impedances of the rings in a finite baffle
have also been provided in order to complete the system
model. Although this paper describes the blueprint for a bal-
anced, almost ideal, planar radiating speaker, the realization
of a manufacturable design has still many challenges to over-
come.
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